ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi GIF version

Theorem eqeltrrdi 2288
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1 (𝜑𝐵 = 𝐴)
eqeltrrdi.2 𝐵𝐶
Assertion
Ref Expression
eqeltrrdi (𝜑𝐴𝐶)

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2202 . 2 (𝜑𝐴 = 𝐵)
3 eqeltrrdi.2 . 2 𝐵𝐶
42, 3eqeltrdi 2287 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  eusvnfb  4490  releldm2  6252  mapprc  6720  ixpprc  6787  ixpssmap2g  6795  ixpssmapg  6796  bren  6815  brdomg  6816  mapen  6916  ssenen  6921  fi0  7050  nnnninf2  7202  ioof  10063  hashfacen  10945  fsum3  11569  psrval  14296  cnrehmeocntop  14930
  Copyright terms: Public domain W3C validator