| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2213 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2298 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: eusvnfb 4519 releldm2 6294 mapprc 6762 ixpprc 6829 ixpssmap2g 6837 ixpssmapg 6838 bren 6858 brdomg 6860 mapen 6968 ssenen 6973 fi0 7103 nnnninf2 7255 ioof 10128 hashfacen 11018 fsum3 11813 psrval 14543 cnrehmeocntop 15197 |
| Copyright terms: Public domain | W3C validator |