ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi GIF version

Theorem eqeltrrdi 2262
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1 (𝜑𝐵 = 𝐴)
eqeltrrdi.2 𝐵𝐶
Assertion
Ref Expression
eqeltrrdi (𝜑𝐴𝐶)

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2176 . 2 (𝜑𝐴 = 𝐵)
3 eqeltrrdi.2 . 2 𝐵𝐶
42, 3eqeltrdi 2261 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  eusvnfb  4437  releldm2  6161  mapprc  6626  ixpprc  6693  ixpssmap2g  6701  ixpssmapg  6702  bren  6721  brdomg  6722  mapen  6820  ssenen  6825  fi0  6948  nnnninf2  7099  ioof  9915  hashfacen  10758  fsum3  11337  cnrehmeocntop  13308
  Copyright terms: Public domain W3C validator