ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi GIF version

Theorem eqeltrrdi 2297
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1 (𝜑𝐵 = 𝐴)
eqeltrrdi.2 𝐵𝐶
Assertion
Ref Expression
eqeltrrdi (𝜑𝐴𝐶)

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2211 . 2 (𝜑𝐴 = 𝐵)
3 eqeltrrdi.2 . 2 𝐵𝐶
42, 3eqeltrdi 2296 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201
This theorem is referenced by:  eusvnfb  4501  releldm2  6271  mapprc  6739  ixpprc  6806  ixpssmap2g  6814  ixpssmapg  6815  bren  6835  brdomg  6837  mapen  6943  ssenen  6948  fi0  7077  nnnninf2  7229  ioof  10093  hashfacen  10981  fsum3  11698  psrval  14428  cnrehmeocntop  15082
  Copyright terms: Public domain W3C validator