ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi GIF version

Theorem eqeltrrdi 2288
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1 (𝜑𝐵 = 𝐴)
eqeltrrdi.2 𝐵𝐶
Assertion
Ref Expression
eqeltrrdi (𝜑𝐴𝐶)

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2202 . 2 (𝜑𝐴 = 𝐵)
3 eqeltrrdi.2 . 2 𝐵𝐶
42, 3eqeltrdi 2287 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  eusvnfb  4490  releldm2  6244  mapprc  6712  ixpprc  6779  ixpssmap2g  6787  ixpssmapg  6788  bren  6807  brdomg  6808  mapen  6908  ssenen  6913  fi0  7042  nnnninf2  7194  ioof  10048  hashfacen  10930  fsum3  11554  psrval  14230  cnrehmeocntop  14856
  Copyright terms: Public domain W3C validator