ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrdi GIF version

Theorem eqeltrrdi 2321
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrdi.1 (𝜑𝐵 = 𝐴)
eqeltrrdi.2 𝐵𝐶
Assertion
Ref Expression
eqeltrrdi (𝜑𝐴𝐶)

Proof of Theorem eqeltrrdi
StepHypRef Expression
1 eqeltrrdi.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2235 . 2 (𝜑𝐴 = 𝐵)
3 eqeltrrdi.2 . 2 𝐵𝐶
42, 3eqeltrdi 2320 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225
This theorem is referenced by:  eusvnfb  4544  releldm2  6329  mapprc  6797  ixpprc  6864  ixpssmap2g  6872  ixpssmapg  6873  bren  6893  brdomg  6895  mapen  7003  ssenen  7008  fi0  7138  nnnninf2  7290  ioof  10163  hashfacen  11053  fsum3  11893  psrval  14624  cnrehmeocntop  15278
  Copyright terms: Public domain W3C validator