| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2211 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
| 4 | 2, 3 | eqeltrdi 2296 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eusvnfb 4501 releldm2 6271 mapprc 6739 ixpprc 6806 ixpssmap2g 6814 ixpssmapg 6815 bren 6835 brdomg 6837 mapen 6943 ssenen 6948 fi0 7077 nnnninf2 7229 ioof 10093 hashfacen 10981 fsum3 11698 psrval 14428 cnrehmeocntop 15082 |
| Copyright terms: Public domain | W3C validator |