Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrrdi | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrdi.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqeltrrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrdi.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2176 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqeltrrdi.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | eqeltrdi 2261 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eusvnfb 4437 releldm2 6161 mapprc 6626 ixpprc 6693 ixpssmap2g 6701 ixpssmapg 6702 bren 6721 brdomg 6722 mapen 6820 ssenen 6825 fi0 6948 nnnninf2 7099 ioof 9915 hashfacen 10758 fsum3 11337 cnrehmeocntop 13308 |
Copyright terms: Public domain | W3C validator |