Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ioof | Unicode version |
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ioof |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 9865 | . . . 4 | |
2 | ioossre 9892 | . . . . 5 | |
3 | df-ov 5856 | . . . . . . 7 | |
4 | iooex 9864 | . . . . . . . 8 | |
5 | vex 2733 | . . . . . . . . 9 | |
6 | vex 2733 | . . . . . . . . 9 | |
7 | 5, 6 | opex 4214 | . . . . . . . 8 |
8 | 4, 7 | fvex 5516 | . . . . . . 7 |
9 | 3, 8 | eqeltri 2243 | . . . . . 6 |
10 | 9 | elpw 3572 | . . . . 5 |
11 | 2, 10 | mpbir 145 | . . . 4 |
12 | 1, 11 | eqeltrrdi 2262 | . . 3 |
13 | 12 | rgen2a 2524 | . 2 |
14 | df-ioo 9849 | . . 3 | |
15 | 14 | fmpo 6180 | . 2 |
16 | 13, 15 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 cpw 3566 cop 3586 class class class wbr 3989 cxp 4609 wf 5194 cfv 5198 (class class class)co 5853 cr 7773 cxr 7953 clt 7954 cioo 9845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-ioo 9849 |
This theorem is referenced by: unirnioo 9930 dfioo2 9931 ioorebasg 9932 qtopbasss 13315 retopbas 13317 tgioo 13340 tgqioo 13341 |
Copyright terms: Public domain | W3C validator |