ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof Unicode version

Theorem ioof 9358
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof  |-  (,) :
( RR*  X.  RR* ) --> ~P RR

Proof of Theorem ioof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 9295 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
2 ioossre 9322 . . . . 5  |-  ( x (,) y )  C_  RR
3 df-ov 5637 . . . . . . 7  |-  ( x (,) y )  =  ( (,) `  <. x ,  y >. )
4 iooex 9294 . . . . . . . 8  |-  (,)  e.  _V
5 vex 2622 . . . . . . . . 9  |-  x  e. 
_V
6 vex 2622 . . . . . . . . 9  |-  y  e. 
_V
75, 6opex 4047 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
84, 7fvex 5309 . . . . . . 7  |-  ( (,) `  <. x ,  y
>. )  e.  _V
93, 8eqeltri 2160 . . . . . 6  |-  ( x (,) y )  e. 
_V
109elpw 3431 . . . . 5  |-  ( ( x (,) y )  e.  ~P RR  <->  ( x (,) y )  C_  RR )
112, 10mpbir 144 . . . 4  |-  ( x (,) y )  e. 
~P RR
121, 11syl6eqelr 2179 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) }  e.  ~P RR )
1312rgen2a 2429 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) }  e.  ~P RR
14 df-ioo 9279 . . 3  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
1514fmpt2 5953 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) }  e.  ~P RR  <->  (,) : ( RR*  X. 
RR* ) --> ~P RR )
1613, 15mpbi 143 1  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
Colors of variables: wff set class
Syntax hints:    /\ wa 102    e. wcel 1438   A.wral 2359   {crab 2363   _Vcvv 2619    C_ wss 2997   ~Pcpw 3425   <.cop 3444   class class class wbr 3837    X. cxp 4426   -->wf 4998   ` cfv 5002  (class class class)co 5634   RRcr 7328   RR*cxr 7500    < clt 7501   (,)cioo 9275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-ioo 9279
This theorem is referenced by:  unirnioo  9360  dfioo2  9361  ioorebasg  9362
  Copyright terms: Public domain W3C validator