ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof Unicode version

Theorem ioof 10040
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof  |-  (,) :
( RR*  X.  RR* ) --> ~P RR

Proof of Theorem ioof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 9977 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
2 ioossre 10004 . . . . 5  |-  ( x (,) y )  C_  RR
3 df-ov 5922 . . . . . . 7  |-  ( x (,) y )  =  ( (,) `  <. x ,  y >. )
4 iooex 9976 . . . . . . . 8  |-  (,)  e.  _V
5 vex 2763 . . . . . . . . 9  |-  x  e. 
_V
6 vex 2763 . . . . . . . . 9  |-  y  e. 
_V
75, 6opex 4259 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
84, 7fvex 5575 . . . . . . 7  |-  ( (,) `  <. x ,  y
>. )  e.  _V
93, 8eqeltri 2266 . . . . . 6  |-  ( x (,) y )  e. 
_V
109elpw 3608 . . . . 5  |-  ( ( x (,) y )  e.  ~P RR  <->  ( x (,) y )  C_  RR )
112, 10mpbir 146 . . . 4  |-  ( x (,) y )  e. 
~P RR
121, 11eqeltrrdi 2285 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) }  e.  ~P RR )
1312rgen2a 2548 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) }  e.  ~P RR
14 df-ioo 9961 . . 3  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
1514fmpo 6256 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) }  e.  ~P RR  <->  (,) : ( RR*  X. 
RR* ) --> ~P RR )
1613, 15mpbi 145 1  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602   <.cop 3622   class class class wbr 4030    X. cxp 4658   -->wf 5251   ` cfv 5255  (class class class)co 5919   RRcr 7873   RR*cxr 8055    < clt 8056   (,)cioo 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-ioo 9961
This theorem is referenced by:  unirnioo  10042  dfioo2  10043  ioorebasg  10044  qtopbasss  14700  retopbas  14702  tgioo  14733  tgqioo  14734
  Copyright terms: Public domain W3C validator