ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof Unicode version

Theorem ioof 10163
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof  |-  (,) :
( RR*  X.  RR* ) --> ~P RR

Proof of Theorem ioof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 10100 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
2 ioossre 10127 . . . . 5  |-  ( x (,) y )  C_  RR
3 df-ov 6003 . . . . . . 7  |-  ( x (,) y )  =  ( (,) `  <. x ,  y >. )
4 iooex 10099 . . . . . . . 8  |-  (,)  e.  _V
5 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
6 vex 2802 . . . . . . . . 9  |-  y  e. 
_V
75, 6opex 4314 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
84, 7fvex 5646 . . . . . . 7  |-  ( (,) `  <. x ,  y
>. )  e.  _V
93, 8eqeltri 2302 . . . . . 6  |-  ( x (,) y )  e. 
_V
109elpw 3655 . . . . 5  |-  ( ( x (,) y )  e.  ~P RR  <->  ( x (,) y )  C_  RR )
112, 10mpbir 146 . . . 4  |-  ( x (,) y )  e. 
~P RR
121, 11eqeltrrdi 2321 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) }  e.  ~P RR )
1312rgen2a 2584 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) }  e.  ~P RR
14 df-ioo 10084 . . 3  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
1514fmpo 6345 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) }  e.  ~P RR  <->  (,) : ( RR*  X. 
RR* ) --> ~P RR )
1613, 15mpbi 145 1  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   <.cop 3669   class class class wbr 4082    X. cxp 4716   -->wf 5313   ` cfv 5317  (class class class)co 6000   RRcr 7994   RR*cxr 8176    < clt 8177   (,)cioo 10080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-ioo 10084
This theorem is referenced by:  unirnioo  10165  dfioo2  10166  ioorebasg  10167  qtopbasss  15189  retopbas  15191  tgioo  15222  tgqioo  15223
  Copyright terms: Public domain W3C validator