ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof Unicode version

Theorem ioof 9907
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof  |-  (,) :
( RR*  X.  RR* ) --> ~P RR

Proof of Theorem ioof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 9844 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
2 ioossre 9871 . . . . 5  |-  ( x (,) y )  C_  RR
3 df-ov 5845 . . . . . . 7  |-  ( x (,) y )  =  ( (,) `  <. x ,  y >. )
4 iooex 9843 . . . . . . . 8  |-  (,)  e.  _V
5 vex 2729 . . . . . . . . 9  |-  x  e. 
_V
6 vex 2729 . . . . . . . . 9  |-  y  e. 
_V
75, 6opex 4207 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
84, 7fvex 5506 . . . . . . 7  |-  ( (,) `  <. x ,  y
>. )  e.  _V
93, 8eqeltri 2239 . . . . . 6  |-  ( x (,) y )  e. 
_V
109elpw 3565 . . . . 5  |-  ( ( x (,) y )  e.  ~P RR  <->  ( x (,) y )  C_  RR )
112, 10mpbir 145 . . . 4  |-  ( x (,) y )  e. 
~P RR
121, 11eqeltrrdi 2258 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) }  e.  ~P RR )
1312rgen2a 2520 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) }  e.  ~P RR
14 df-ioo 9828 . . 3  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
1514fmpo 6169 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) }  e.  ~P RR  <->  (,) : ( RR*  X. 
RR* ) --> ~P RR )
1613, 15mpbi 144 1  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2136   A.wral 2444   {crab 2448   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   <.cop 3579   class class class wbr 3982    X. cxp 4602   -->wf 5184   ` cfv 5188  (class class class)co 5842   RRcr 7752   RR*cxr 7932    < clt 7933   (,)cioo 9824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-ioo 9828
This theorem is referenced by:  unirnioo  9909  dfioo2  9910  ioorebasg  9911  qtopbasss  13171  retopbas  13173  tgioo  13196  tgqioo  13197
  Copyright terms: Public domain W3C validator