ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioof Unicode version

Theorem ioof 10113
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
ioof  |-  (,) :
( RR*  X.  RR* ) --> ~P RR

Proof of Theorem ioof
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iooval 10050 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x (,) y )  =  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
2 ioossre 10077 . . . . 5  |-  ( x (,) y )  C_  RR
3 df-ov 5960 . . . . . . 7  |-  ( x (,) y )  =  ( (,) `  <. x ,  y >. )
4 iooex 10049 . . . . . . . 8  |-  (,)  e.  _V
5 vex 2776 . . . . . . . . 9  |-  x  e. 
_V
6 vex 2776 . . . . . . . . 9  |-  y  e. 
_V
75, 6opex 4281 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
84, 7fvex 5609 . . . . . . 7  |-  ( (,) `  <. x ,  y
>. )  e.  _V
93, 8eqeltri 2279 . . . . . 6  |-  ( x (,) y )  e. 
_V
109elpw 3627 . . . . 5  |-  ( ( x (,) y )  e.  ~P RR  <->  ( x (,) y )  C_  RR )
112, 10mpbir 146 . . . 4  |-  ( x (,) y )  e. 
~P RR
121, 11eqeltrrdi 2298 . . 3  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) }  e.  ~P RR )
1312rgen2a 2561 . 2  |-  A. x  e.  RR*  A. y  e. 
RR*  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) }  e.  ~P RR
14 df-ioo 10034 . . 3  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
1514fmpo 6300 . 2  |-  ( A. x  e.  RR*  A. y  e.  RR*  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) }  e.  ~P RR  <->  (,) : ( RR*  X. 
RR* ) --> ~P RR )
1613, 15mpbi 145 1  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2177   A.wral 2485   {crab 2489   _Vcvv 2773    C_ wss 3170   ~Pcpw 3621   <.cop 3641   class class class wbr 4051    X. cxp 4681   -->wf 5276   ` cfv 5280  (class class class)co 5957   RRcr 7944   RR*cxr 8126    < clt 8127   (,)cioo 10030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-ioo 10034
This theorem is referenced by:  unirnioo  10115  dfioo2  10116  ioorebasg  10117  qtopbasss  15068  retopbas  15070  tgioo  15101  tgqioo  15102
  Copyright terms: Public domain W3C validator