ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmapg Unicode version

Theorem ixpssmapg 6838
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
ixpssmapg  |-  ( A. x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpssmapg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6814 . . . . . . 7  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
2 fndm 5392 . . . . . . . 8  |-  ( f  Fn  A  ->  dom  f  =  A )
3 vex 2779 . . . . . . . . 9  |-  f  e. 
_V
43dmex 4964 . . . . . . . 8  |-  dom  f  e.  _V
52, 4eqeltrrdi 2299 . . . . . . 7  |-  ( f  Fn  A  ->  A  e.  _V )
61, 5syl 14 . . . . . 6  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
7 id 19 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  V )
8 iunexg 6227 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  B  e.  V )  ->  U_ x  e.  A  B  e.  _V )
96, 7, 8syl2anr 290 . . . . 5  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  ->  U_ x  e.  A  B  e.  _V )
10 ixpssmap2g 6837 . . . . 5  |-  ( U_ x  e.  A  B  e.  _V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
119, 10syl 14 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A
) )
12 simpr 110 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f  e.  X_ x  e.  A  B )
1311, 12sseldd 3202 . . 3  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f  e.  ( U_ x  e.  A  B  ^m  A ) )
1413ex 115 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( f  e.  X_ x  e.  A  B  ->  f  e.  (
U_ x  e.  A  B  ^m  A ) ) )
1514ssrdv 3207 1  |-  ( A. x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174   U_ciun 3941   dom cdm 4693    Fn wfn 5285  (class class class)co 5967    ^m cmap 6758   X_cixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-ixp 6809
This theorem is referenced by:  ixpssmap  6842
  Copyright terms: Public domain W3C validator