ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpssmapg Unicode version

Theorem ixpssmapg 6694
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
ixpssmapg  |-  ( A. x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpssmapg
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ixpfn 6670 . . . . . . 7  |-  ( f  e.  X_ x  e.  A  B  ->  f  Fn  A
)
2 fndm 5287 . . . . . . . 8  |-  ( f  Fn  A  ->  dom  f  =  A )
3 vex 2729 . . . . . . . . 9  |-  f  e. 
_V
43dmex 4870 . . . . . . . 8  |-  dom  f  e.  _V
52, 4eqeltrrdi 2258 . . . . . . 7  |-  ( f  Fn  A  ->  A  e.  _V )
61, 5syl 14 . . . . . 6  |-  ( f  e.  X_ x  e.  A  B  ->  A  e.  _V )
7 id 19 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  V )
8 iunexg 6087 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  B  e.  V )  ->  U_ x  e.  A  B  e.  _V )
96, 7, 8syl2anr 288 . . . . 5  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  ->  U_ x  e.  A  B  e.  _V )
10 ixpssmap2g 6693 . . . . 5  |-  ( U_ x  e.  A  B  e.  _V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
119, 10syl 14 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A
) )
12 simpr 109 . . . 4  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f  e.  X_ x  e.  A  B )
1311, 12sseldd 3143 . . 3  |-  ( ( A. x  e.  A  B  e.  V  /\  f  e.  X_ x  e.  A  B )  -> 
f  e.  ( U_ x  e.  A  B  ^m  A ) )
1413ex 114 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( f  e.  X_ x  e.  A  B  ->  f  e.  (
U_ x  e.  A  B  ^m  A ) ) )
1514ssrdv 3148 1  |-  ( A. x  e.  A  B  e.  V  ->  X_ x  e.  A  B  C_  ( U_ x  e.  A  B  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   U_ciun 3866   dom cdm 4604    Fn wfn 5183  (class class class)co 5842    ^m cmap 6614   X_cixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-ixp 6665
This theorem is referenced by:  ixpssmap  6698
  Copyright terms: Public domain W3C validator