Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpssmapg | Unicode version |
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
ixpssmapg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpfn 6682 | . . . . . . 7 | |
2 | fndm 5297 | . . . . . . . 8 | |
3 | vex 2733 | . . . . . . . . 9 | |
4 | 3 | dmex 4877 | . . . . . . . 8 |
5 | 2, 4 | eqeltrrdi 2262 | . . . . . . 7 |
6 | 1, 5 | syl 14 | . . . . . 6 |
7 | id 19 | . . . . . 6 | |
8 | iunexg 6098 | . . . . . 6 | |
9 | 6, 7, 8 | syl2anr 288 | . . . . 5 |
10 | ixpssmap2g 6705 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | simpr 109 | . . . 4 | |
13 | 11, 12 | sseldd 3148 | . . 3 |
14 | 13 | ex 114 | . 2 |
15 | 14 | ssrdv 3153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 wral 2448 cvv 2730 wss 3121 ciun 3873 cdm 4611 wfn 5193 (class class class)co 5853 cmap 6626 cixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-ixp 6677 |
This theorem is referenced by: ixpssmap 6710 |
Copyright terms: Public domain | W3C validator |