| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f0rn0 | Unicode version | ||
| Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.) |
| Ref | Expression |
|---|---|
| f0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5451 |
. . 3
| |
| 2 | frn 5454 |
. . . . . . . . 9
| |
| 3 | ralnex 2496 |
. . . . . . . . . 10
| |
| 4 | disj 3517 |
. . . . . . . . . . 11
| |
| 5 | df-ss 3187 |
. . . . . . . . . . . 12
| |
| 6 | incom 3373 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1i 2215 |
. . . . . . . . . . . . 13
|
| 8 | eqtr2 2226 |
. . . . . . . . . . . . . 14
| |
| 9 | 8 | ex 115 |
. . . . . . . . . . . . 13
|
| 10 | 7, 9 | sylbi 121 |
. . . . . . . . . . . 12
|
| 11 | 5, 10 | sylbi 121 |
. . . . . . . . . . 11
|
| 12 | 4, 11 | biimtrrid 153 |
. . . . . . . . . 10
|
| 13 | 3, 12 | biimtrrid 153 |
. . . . . . . . 9
|
| 14 | 2, 13 | syl 14 |
. . . . . . . 8
|
| 15 | 14 | imp 124 |
. . . . . . 7
|
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | dm0rn0 4914 |
. . . . . 6
| |
| 18 | 16, 17 | sylibr 134 |
. . . . 5
|
| 19 | eqeq1 2214 |
. . . . . . 7
| |
| 20 | 19 | eqcoms 2210 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | 18, 21 | mpbird 167 |
. . . 4
|
| 23 | 22 | exp32 365 |
. . 3
|
| 24 | 1, 23 | mpcom 36 |
. 2
|
| 25 | 24 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 df-fn 5293 df-f 5294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |