Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f0rn0 | Unicode version |
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.) |
Ref | Expression |
---|---|
f0rn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5343 | . . 3 | |
2 | frn 5346 | . . . . . . . . 9 | |
3 | ralnex 2454 | . . . . . . . . . 10 | |
4 | disj 3457 | . . . . . . . . . . 11 | |
5 | df-ss 3129 | . . . . . . . . . . . 12 | |
6 | incom 3314 | . . . . . . . . . . . . . 14 | |
7 | 6 | eqeq1i 2173 | . . . . . . . . . . . . 13 |
8 | eqtr2 2184 | . . . . . . . . . . . . . 14 | |
9 | 8 | ex 114 | . . . . . . . . . . . . 13 |
10 | 7, 9 | sylbi 120 | . . . . . . . . . . . 12 |
11 | 5, 10 | sylbi 120 | . . . . . . . . . . 11 |
12 | 4, 11 | syl5bir 152 | . . . . . . . . . 10 |
13 | 3, 12 | syl5bir 152 | . . . . . . . . 9 |
14 | 2, 13 | syl 14 | . . . . . . . 8 |
15 | 14 | imp 123 | . . . . . . 7 |
16 | 15 | adantl 275 | . . . . . 6 |
17 | dm0rn0 4821 | . . . . . 6 | |
18 | 16, 17 | sylibr 133 | . . . . 5 |
19 | eqeq1 2172 | . . . . . . 7 | |
20 | 19 | eqcoms 2168 | . . . . . 6 |
21 | 20 | adantr 274 | . . . . 5 |
22 | 18, 21 | mpbird 166 | . . . 4 |
23 | 22 | exp32 363 | . . 3 |
24 | 1, 23 | mpcom 36 | . 2 |
25 | 24 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 c0 3409 cdm 4604 crn 4605 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-fn 5191 df-f 5192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |