ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0rn0 Unicode version

Theorem f0rn0 5469
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Distinct variable groups:    y, E    y, Y
Allowed substitution hint:    X( y)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5430 . . 3  |-  ( E : X --> Y  ->  dom  E  =  X )
2 frn 5433 . . . . . . . . 9  |-  ( E : X --> Y  ->  ran  E  C_  Y )
3 ralnex 2493 . . . . . . . . . 10  |-  ( A. y  e.  Y  -.  y  e.  ran  E  <->  -.  E. y  e.  Y  y  e.  ran  E )
4 disj 3508 . . . . . . . . . . 11  |-  ( ( Y  i^i  ran  E
)  =  (/)  <->  A. y  e.  Y  -.  y  e.  ran  E )
5 df-ss 3178 . . . . . . . . . . . 12  |-  ( ran 
E  C_  Y  <->  ( ran  E  i^i  Y )  =  ran  E )
6 incom 3364 . . . . . . . . . . . . . 14  |-  ( ran 
E  i^i  Y )  =  ( Y  i^i  ran 
E )
76eqeq1i 2212 . . . . . . . . . . . . 13  |-  ( ( ran  E  i^i  Y
)  =  ran  E  <->  ( Y  i^i  ran  E
)  =  ran  E
)
8 eqtr2 2223 . . . . . . . . . . . . . 14  |-  ( ( ( Y  i^i  ran  E )  =  ran  E  /\  ( Y  i^i  ran  E )  =  (/) )  ->  ran  E  =  (/) )
98ex 115 . . . . . . . . . . . . 13  |-  ( ( Y  i^i  ran  E
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
107, 9sylbi 121 . . . . . . . . . . . 12  |-  ( ( ran  E  i^i  Y
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
115, 10sylbi 121 . . . . . . . . . . 11  |-  ( ran 
E  C_  Y  ->  ( ( Y  i^i  ran  E )  =  (/)  ->  ran  E  =  (/) ) )
124, 11biimtrrid 153 . . . . . . . . . 10  |-  ( ran 
E  C_  Y  ->  ( A. y  e.  Y  -.  y  e.  ran  E  ->  ran  E  =  (/) ) )
133, 12biimtrrid 153 . . . . . . . . 9  |-  ( ran 
E  C_  Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
142, 13syl 14 . . . . . . . 8  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
1514imp 124 . . . . . . 7  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  ran  E  =  (/) )
1615adantl 277 . . . . . 6  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ran  E  =  (/) )
17 dm0rn0 4894 . . . . . 6  |-  ( dom 
E  =  (/)  <->  ran  E  =  (/) )
1816, 17sylibr 134 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  dom  E  =  (/) )
19 eqeq1 2211 . . . . . . 7  |-  ( X  =  dom  E  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2019eqcoms 2207 . . . . . 6  |-  ( dom 
E  =  X  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2120adantr 276 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ( X  =  (/) 
<->  dom  E  =  (/) ) )
2218, 21mpbird 167 . . . 4  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  X  =  (/) )
2322exp32 365 . . 3  |-  ( dom 
E  =  X  -> 
( E : X --> Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) ) )
241, 23mpcom 36 . 2  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) )
2524imp 124 1  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484    i^i cin 3164    C_ wss 3165   (/)c0 3459   dom cdm 4674   ran crn 4675   -->wf 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-cnv 4682  df-dm 4684  df-rn 4685  df-fn 5273  df-f 5274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator