| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f0rn0 | Unicode version | ||
| Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.) |
| Ref | Expression |
|---|---|
| f0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5478 |
. . 3
| |
| 2 | frn 5481 |
. . . . . . . . 9
| |
| 3 | ralnex 2518 |
. . . . . . . . . 10
| |
| 4 | disj 3540 |
. . . . . . . . . . 11
| |
| 5 | df-ss 3210 |
. . . . . . . . . . . 12
| |
| 6 | incom 3396 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1i 2237 |
. . . . . . . . . . . . 13
|
| 8 | eqtr2 2248 |
. . . . . . . . . . . . . 14
| |
| 9 | 8 | ex 115 |
. . . . . . . . . . . . 13
|
| 10 | 7, 9 | sylbi 121 |
. . . . . . . . . . . 12
|
| 11 | 5, 10 | sylbi 121 |
. . . . . . . . . . 11
|
| 12 | 4, 11 | biimtrrid 153 |
. . . . . . . . . 10
|
| 13 | 3, 12 | biimtrrid 153 |
. . . . . . . . 9
|
| 14 | 2, 13 | syl 14 |
. . . . . . . 8
|
| 15 | 14 | imp 124 |
. . . . . . 7
|
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | dm0rn0 4939 |
. . . . . 6
| |
| 18 | 16, 17 | sylibr 134 |
. . . . 5
|
| 19 | eqeq1 2236 |
. . . . . . 7
| |
| 20 | 19 | eqcoms 2232 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | 18, 21 | mpbird 167 |
. . . 4
|
| 23 | 22 | exp32 365 |
. . 3
|
| 24 | 1, 23 | mpcom 36 |
. 2
|
| 25 | 24 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 df-fn 5320 df-f 5321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |