ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0rn0 Unicode version

Theorem f0rn0 5452
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Distinct variable groups:    y, E    y, Y
Allowed substitution hint:    X( y)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5413 . . 3  |-  ( E : X --> Y  ->  dom  E  =  X )
2 frn 5416 . . . . . . . . 9  |-  ( E : X --> Y  ->  ran  E  C_  Y )
3 ralnex 2485 . . . . . . . . . 10  |-  ( A. y  e.  Y  -.  y  e.  ran  E  <->  -.  E. y  e.  Y  y  e.  ran  E )
4 disj 3499 . . . . . . . . . . 11  |-  ( ( Y  i^i  ran  E
)  =  (/)  <->  A. y  e.  Y  -.  y  e.  ran  E )
5 df-ss 3170 . . . . . . . . . . . 12  |-  ( ran 
E  C_  Y  <->  ( ran  E  i^i  Y )  =  ran  E )
6 incom 3355 . . . . . . . . . . . . . 14  |-  ( ran 
E  i^i  Y )  =  ( Y  i^i  ran 
E )
76eqeq1i 2204 . . . . . . . . . . . . 13  |-  ( ( ran  E  i^i  Y
)  =  ran  E  <->  ( Y  i^i  ran  E
)  =  ran  E
)
8 eqtr2 2215 . . . . . . . . . . . . . 14  |-  ( ( ( Y  i^i  ran  E )  =  ran  E  /\  ( Y  i^i  ran  E )  =  (/) )  ->  ran  E  =  (/) )
98ex 115 . . . . . . . . . . . . 13  |-  ( ( Y  i^i  ran  E
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
107, 9sylbi 121 . . . . . . . . . . . 12  |-  ( ( ran  E  i^i  Y
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
115, 10sylbi 121 . . . . . . . . . . 11  |-  ( ran 
E  C_  Y  ->  ( ( Y  i^i  ran  E )  =  (/)  ->  ran  E  =  (/) ) )
124, 11biimtrrid 153 . . . . . . . . . 10  |-  ( ran 
E  C_  Y  ->  ( A. y  e.  Y  -.  y  e.  ran  E  ->  ran  E  =  (/) ) )
133, 12biimtrrid 153 . . . . . . . . 9  |-  ( ran 
E  C_  Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
142, 13syl 14 . . . . . . . 8  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
1514imp 124 . . . . . . 7  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  ran  E  =  (/) )
1615adantl 277 . . . . . 6  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ran  E  =  (/) )
17 dm0rn0 4883 . . . . . 6  |-  ( dom 
E  =  (/)  <->  ran  E  =  (/) )
1816, 17sylibr 134 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  dom  E  =  (/) )
19 eqeq1 2203 . . . . . . 7  |-  ( X  =  dom  E  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2019eqcoms 2199 . . . . . 6  |-  ( dom 
E  =  X  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2120adantr 276 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ( X  =  (/) 
<->  dom  E  =  (/) ) )
2218, 21mpbird 167 . . . 4  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  X  =  (/) )
2322exp32 365 . . 3  |-  ( dom 
E  =  X  -> 
( E : X --> Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) ) )
241, 23mpcom 36 . 2  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) )
2524imp 124 1  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    i^i cin 3156    C_ wss 3157   (/)c0 3450   dom cdm 4663   ran crn 4664   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-fn 5261  df-f 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator