| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f0rn0 | Unicode version | ||
| Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.) |
| Ref | Expression |
|---|---|
| f0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5431 |
. . 3
| |
| 2 | frn 5434 |
. . . . . . . . 9
| |
| 3 | ralnex 2494 |
. . . . . . . . . 10
| |
| 4 | disj 3509 |
. . . . . . . . . . 11
| |
| 5 | df-ss 3179 |
. . . . . . . . . . . 12
| |
| 6 | incom 3365 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1i 2213 |
. . . . . . . . . . . . 13
|
| 8 | eqtr2 2224 |
. . . . . . . . . . . . . 14
| |
| 9 | 8 | ex 115 |
. . . . . . . . . . . . 13
|
| 10 | 7, 9 | sylbi 121 |
. . . . . . . . . . . 12
|
| 11 | 5, 10 | sylbi 121 |
. . . . . . . . . . 11
|
| 12 | 4, 11 | biimtrrid 153 |
. . . . . . . . . 10
|
| 13 | 3, 12 | biimtrrid 153 |
. . . . . . . . 9
|
| 14 | 2, 13 | syl 14 |
. . . . . . . 8
|
| 15 | 14 | imp 124 |
. . . . . . 7
|
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | dm0rn0 4895 |
. . . . . 6
| |
| 18 | 16, 17 | sylibr 134 |
. . . . 5
|
| 19 | eqeq1 2212 |
. . . . . . 7
| |
| 20 | 19 | eqcoms 2208 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | 18, 21 | mpbird 167 |
. . . 4
|
| 23 | 22 | exp32 365 |
. . 3
|
| 24 | 1, 23 | mpcom 36 |
. 2
|
| 25 | 24 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-cnv 4683 df-dm 4685 df-rn 4686 df-fn 5274 df-f 5275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |