ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0rn0 Unicode version

Theorem f0rn0 5317
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Distinct variable groups:    y, E    y, Y
Allowed substitution hint:    X( y)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5278 . . 3  |-  ( E : X --> Y  ->  dom  E  =  X )
2 frn 5281 . . . . . . . . 9  |-  ( E : X --> Y  ->  ran  E  C_  Y )
3 ralnex 2426 . . . . . . . . . 10  |-  ( A. y  e.  Y  -.  y  e.  ran  E  <->  -.  E. y  e.  Y  y  e.  ran  E )
4 disj 3411 . . . . . . . . . . 11  |-  ( ( Y  i^i  ran  E
)  =  (/)  <->  A. y  e.  Y  -.  y  e.  ran  E )
5 df-ss 3084 . . . . . . . . . . . 12  |-  ( ran 
E  C_  Y  <->  ( ran  E  i^i  Y )  =  ran  E )
6 incom 3268 . . . . . . . . . . . . . 14  |-  ( ran 
E  i^i  Y )  =  ( Y  i^i  ran 
E )
76eqeq1i 2147 . . . . . . . . . . . . 13  |-  ( ( ran  E  i^i  Y
)  =  ran  E  <->  ( Y  i^i  ran  E
)  =  ran  E
)
8 eqtr2 2158 . . . . . . . . . . . . . 14  |-  ( ( ( Y  i^i  ran  E )  =  ran  E  /\  ( Y  i^i  ran  E )  =  (/) )  ->  ran  E  =  (/) )
98ex 114 . . . . . . . . . . . . 13  |-  ( ( Y  i^i  ran  E
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
107, 9sylbi 120 . . . . . . . . . . . 12  |-  ( ( ran  E  i^i  Y
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
115, 10sylbi 120 . . . . . . . . . . 11  |-  ( ran 
E  C_  Y  ->  ( ( Y  i^i  ran  E )  =  (/)  ->  ran  E  =  (/) ) )
124, 11syl5bir 152 . . . . . . . . . 10  |-  ( ran 
E  C_  Y  ->  ( A. y  e.  Y  -.  y  e.  ran  E  ->  ran  E  =  (/) ) )
133, 12syl5bir 152 . . . . . . . . 9  |-  ( ran 
E  C_  Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
142, 13syl 14 . . . . . . . 8  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
1514imp 123 . . . . . . 7  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  ran  E  =  (/) )
1615adantl 275 . . . . . 6  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ran  E  =  (/) )
17 dm0rn0 4756 . . . . . 6  |-  ( dom 
E  =  (/)  <->  ran  E  =  (/) )
1816, 17sylibr 133 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  dom  E  =  (/) )
19 eqeq1 2146 . . . . . . 7  |-  ( X  =  dom  E  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2019eqcoms 2142 . . . . . 6  |-  ( dom 
E  =  X  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2120adantr 274 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ( X  =  (/) 
<->  dom  E  =  (/) ) )
2218, 21mpbird 166 . . . 4  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  X  =  (/) )
2322exp32 362 . . 3  |-  ( dom 
E  =  X  -> 
( E : X --> Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) ) )
241, 23mpcom 36 . 2  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) )
2524imp 123 1  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417    i^i cin 3070    C_ wss 3071   (/)c0 3363   dom cdm 4539   ran crn 4540   -->wf 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-cnv 4547  df-dm 4549  df-rn 4550  df-fn 5126  df-f 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator