| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f0rn0 | Unicode version | ||
| Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.) |
| Ref | Expression |
|---|---|
| f0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5413 |
. . 3
| |
| 2 | frn 5416 |
. . . . . . . . 9
| |
| 3 | ralnex 2485 |
. . . . . . . . . 10
| |
| 4 | disj 3499 |
. . . . . . . . . . 11
| |
| 5 | df-ss 3170 |
. . . . . . . . . . . 12
| |
| 6 | incom 3355 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1i 2204 |
. . . . . . . . . . . . 13
|
| 8 | eqtr2 2215 |
. . . . . . . . . . . . . 14
| |
| 9 | 8 | ex 115 |
. . . . . . . . . . . . 13
|
| 10 | 7, 9 | sylbi 121 |
. . . . . . . . . . . 12
|
| 11 | 5, 10 | sylbi 121 |
. . . . . . . . . . 11
|
| 12 | 4, 11 | biimtrrid 153 |
. . . . . . . . . 10
|
| 13 | 3, 12 | biimtrrid 153 |
. . . . . . . . 9
|
| 14 | 2, 13 | syl 14 |
. . . . . . . 8
|
| 15 | 14 | imp 124 |
. . . . . . 7
|
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | dm0rn0 4883 |
. . . . . 6
| |
| 18 | 16, 17 | sylibr 134 |
. . . . 5
|
| 19 | eqeq1 2203 |
. . . . . . 7
| |
| 20 | 19 | eqcoms 2199 |
. . . . . 6
|
| 21 | 20 | adantr 276 |
. . . . 5
|
| 22 | 18, 21 | mpbird 167 |
. . . 4
|
| 23 | 22 | exp32 365 |
. . 3
|
| 24 | 1, 23 | mpcom 36 |
. 2
|
| 25 | 24 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-fn 5261 df-f 5262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |