ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0rn0 Unicode version

Theorem f0rn0 5412
Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Distinct variable groups:    y, E    y, Y
Allowed substitution hint:    X( y)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5373 . . 3  |-  ( E : X --> Y  ->  dom  E  =  X )
2 frn 5376 . . . . . . . . 9  |-  ( E : X --> Y  ->  ran  E  C_  Y )
3 ralnex 2465 . . . . . . . . . 10  |-  ( A. y  e.  Y  -.  y  e.  ran  E  <->  -.  E. y  e.  Y  y  e.  ran  E )
4 disj 3473 . . . . . . . . . . 11  |-  ( ( Y  i^i  ran  E
)  =  (/)  <->  A. y  e.  Y  -.  y  e.  ran  E )
5 df-ss 3144 . . . . . . . . . . . 12  |-  ( ran 
E  C_  Y  <->  ( ran  E  i^i  Y )  =  ran  E )
6 incom 3329 . . . . . . . . . . . . . 14  |-  ( ran 
E  i^i  Y )  =  ( Y  i^i  ran 
E )
76eqeq1i 2185 . . . . . . . . . . . . 13  |-  ( ( ran  E  i^i  Y
)  =  ran  E  <->  ( Y  i^i  ran  E
)  =  ran  E
)
8 eqtr2 2196 . . . . . . . . . . . . . 14  |-  ( ( ( Y  i^i  ran  E )  =  ran  E  /\  ( Y  i^i  ran  E )  =  (/) )  ->  ran  E  =  (/) )
98ex 115 . . . . . . . . . . . . 13  |-  ( ( Y  i^i  ran  E
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
107, 9sylbi 121 . . . . . . . . . . . 12  |-  ( ( ran  E  i^i  Y
)  =  ran  E  ->  ( ( Y  i^i  ran 
E )  =  (/)  ->  ran  E  =  (/) ) )
115, 10sylbi 121 . . . . . . . . . . 11  |-  ( ran 
E  C_  Y  ->  ( ( Y  i^i  ran  E )  =  (/)  ->  ran  E  =  (/) ) )
124, 11biimtrrid 153 . . . . . . . . . 10  |-  ( ran 
E  C_  Y  ->  ( A. y  e.  Y  -.  y  e.  ran  E  ->  ran  E  =  (/) ) )
133, 12biimtrrid 153 . . . . . . . . 9  |-  ( ran 
E  C_  Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
142, 13syl 14 . . . . . . . 8  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  ran  E  =  (/) ) )
1514imp 124 . . . . . . 7  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  ran  E  =  (/) )
1615adantl 277 . . . . . 6  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ran  E  =  (/) )
17 dm0rn0 4846 . . . . . 6  |-  ( dom 
E  =  (/)  <->  ran  E  =  (/) )
1816, 17sylibr 134 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  dom  E  =  (/) )
19 eqeq1 2184 . . . . . . 7  |-  ( X  =  dom  E  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2019eqcoms 2180 . . . . . 6  |-  ( dom 
E  =  X  -> 
( X  =  (/)  <->  dom  E  =  (/) ) )
2120adantr 276 . . . . 5  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  ( X  =  (/) 
<->  dom  E  =  (/) ) )
2218, 21mpbird 167 . . . 4  |-  ( ( dom  E  =  X  /\  ( E : X
--> Y  /\  -.  E. y  e.  Y  y  e.  ran  E ) )  ->  X  =  (/) )
2322exp32 365 . . 3  |-  ( dom 
E  =  X  -> 
( E : X --> Y  ->  ( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) ) )
241, 23mpcom 36 . 2  |-  ( E : X --> Y  -> 
( -.  E. y  e.  Y  y  e.  ran  E  ->  X  =  (/) ) )
2524imp 124 1  |-  ( ( E : X --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    i^i cin 3130    C_ wss 3131   (/)c0 3424   dom cdm 4628   ran crn 4629   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639  df-fn 5221  df-f 5222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator