ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dvds Unicode version

Theorem 0dvds 11747
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )

Proof of Theorem 0dvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 0z 9198 . . . 4  |-  0  e.  ZZ
2 divides 11725 . . . 4  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  E. n  e.  ZZ  (
n  x.  0 )  =  N ) )
31, 2mpan 421 . . 3  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  E. n  e.  ZZ  ( n  x.  0 )  =  N ) )
4 zcn 9192 . . . . . . 7  |-  ( n  e.  ZZ  ->  n  e.  CC )
54mul01d 8287 . . . . . 6  |-  ( n  e.  ZZ  ->  (
n  x.  0 )  =  0 )
6 eqtr2 2184 . . . . . 6  |-  ( ( ( n  x.  0 )  =  N  /\  ( n  x.  0
)  =  0 )  ->  N  =  0 )
75, 6sylan2 284 . . . . 5  |-  ( ( ( n  x.  0 )  =  N  /\  n  e.  ZZ )  ->  N  =  0 )
87ancoms 266 . . . 4  |-  ( ( n  e.  ZZ  /\  ( n  x.  0
)  =  N )  ->  N  =  0 )
98rexlimiva 2577 . . 3  |-  ( E. n  e.  ZZ  (
n  x.  0 )  =  N  ->  N  =  0 )
103, 9syl6bi 162 . 2  |-  ( N  e.  ZZ  ->  (
0  ||  N  ->  N  =  0 ) )
11 dvds0 11742 . . . 4  |-  ( 0  e.  ZZ  ->  0  ||  0 )
121, 11ax-mp 5 . . 3  |-  0  ||  0
13 breq2 3985 . . 3  |-  ( N  =  0  ->  (
0  ||  N  <->  0  ||  0 ) )
1412, 13mpbiri 167 . 2  |-  ( N  =  0  ->  0  ||  N )
1510, 14impbid1 141 1  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2444   class class class wbr 3981  (class class class)co 5841   0cc0 7749    x. cmul 7754   ZZcz 9187    || cdvds 11723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-setind 4513  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-distr 7853  ax-i2m1 7854  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-sub 8067  df-neg 8068  df-z 9188  df-dvds 11724
This theorem is referenced by:  zdvdsdc  11748  dvdsabseq  11781  bezoutlemle  11937  dfgcd3  11939  dfgcd2  11943  dvdssq  11960  rpdvds  12027  pcdvdstr  12254  pc2dvds  12257
  Copyright terms: Public domain W3C validator