ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dvds Unicode version

Theorem 0dvds 12041
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )

Proof of Theorem 0dvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 0z 9365 . . . 4  |-  0  e.  ZZ
2 divides 12019 . . . 4  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  E. n  e.  ZZ  (
n  x.  0 )  =  N ) )
31, 2mpan 424 . . 3  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  E. n  e.  ZZ  ( n  x.  0 )  =  N ) )
4 zcn 9359 . . . . . . 7  |-  ( n  e.  ZZ  ->  n  e.  CC )
54mul01d 8447 . . . . . 6  |-  ( n  e.  ZZ  ->  (
n  x.  0 )  =  0 )
6 eqtr2 2223 . . . . . 6  |-  ( ( ( n  x.  0 )  =  N  /\  ( n  x.  0
)  =  0 )  ->  N  =  0 )
75, 6sylan2 286 . . . . 5  |-  ( ( ( n  x.  0 )  =  N  /\  n  e.  ZZ )  ->  N  =  0 )
87ancoms 268 . . . 4  |-  ( ( n  e.  ZZ  /\  ( n  x.  0
)  =  N )  ->  N  =  0 )
98rexlimiva 2617 . . 3  |-  ( E. n  e.  ZZ  (
n  x.  0 )  =  N  ->  N  =  0 )
103, 9biimtrdi 163 . 2  |-  ( N  e.  ZZ  ->  (
0  ||  N  ->  N  =  0 ) )
11 dvds0 12036 . . . 4  |-  ( 0  e.  ZZ  ->  0  ||  0 )
121, 11ax-mp 5 . . 3  |-  0  ||  0
13 breq2 4047 . . 3  |-  ( N  =  0  ->  (
0  ||  N  <->  0  ||  0 ) )
1412, 13mpbiri 168 . 2  |-  ( N  =  0  ->  0  ||  N )
1510, 14impbid1 142 1  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    e. wcel 2175   E.wrex 2484   class class class wbr 4043  (class class class)co 5934   0cc0 7907    x. cmul 7912   ZZcz 9354    || cdvds 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4583  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-sub 8227  df-neg 8228  df-z 9355  df-dvds 12018
This theorem is referenced by:  zdvdsdc  12042  fsumdvds  12072  dvdsabseq  12077  bezoutlemle  12248  dfgcd3  12250  dfgcd2  12254  dvdssq  12271  rpdvds  12340  pcdvdstr  12569  pc2dvds  12572  znf1o  14331
  Copyright terms: Public domain W3C validator