ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dvds Unicode version

Theorem 0dvds 11993
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )

Proof of Theorem 0dvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 0z 9354 . . . 4  |-  0  e.  ZZ
2 divides 11971 . . . 4  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  <->  E. n  e.  ZZ  (
n  x.  0 )  =  N ) )
31, 2mpan 424 . . 3  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  E. n  e.  ZZ  ( n  x.  0 )  =  N ) )
4 zcn 9348 . . . . . . 7  |-  ( n  e.  ZZ  ->  n  e.  CC )
54mul01d 8436 . . . . . 6  |-  ( n  e.  ZZ  ->  (
n  x.  0 )  =  0 )
6 eqtr2 2215 . . . . . 6  |-  ( ( ( n  x.  0 )  =  N  /\  ( n  x.  0
)  =  0 )  ->  N  =  0 )
75, 6sylan2 286 . . . . 5  |-  ( ( ( n  x.  0 )  =  N  /\  n  e.  ZZ )  ->  N  =  0 )
87ancoms 268 . . . 4  |-  ( ( n  e.  ZZ  /\  ( n  x.  0
)  =  N )  ->  N  =  0 )
98rexlimiva 2609 . . 3  |-  ( E. n  e.  ZZ  (
n  x.  0 )  =  N  ->  N  =  0 )
103, 9biimtrdi 163 . 2  |-  ( N  e.  ZZ  ->  (
0  ||  N  ->  N  =  0 ) )
11 dvds0 11988 . . . 4  |-  ( 0  e.  ZZ  ->  0  ||  0 )
121, 11ax-mp 5 . . 3  |-  0  ||  0
13 breq2 4038 . . 3  |-  ( N  =  0  ->  (
0  ||  N  <->  0  ||  0 ) )
1412, 13mpbiri 168 . 2  |-  ( N  =  0  ->  0  ||  N )
1510, 14impbid1 142 1  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   0cc0 7896    x. cmul 7901   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217  df-z 9344  df-dvds 11970
This theorem is referenced by:  zdvdsdc  11994  fsumdvds  12024  dvdsabseq  12029  bezoutlemle  12200  dfgcd3  12202  dfgcd2  12206  dvdssq  12223  rpdvds  12292  pcdvdstr  12521  pc2dvds  12524  znf1o  14283
  Copyright terms: Public domain W3C validator