ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr2d Unicode version

Theorem ertr2d 6498
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertrd.5  |-  ( ph  ->  A R B )
ertrd.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertr2d  |-  ( ph  ->  C R A )

Proof of Theorem ertr2d
StepHypRef Expression
1 ersymb.1 . 2  |-  ( ph  ->  R  Er  X )
2 ertrd.5 . . 3  |-  ( ph  ->  A R B )
3 ertrd.6 . . 3  |-  ( ph  ->  B R C )
41, 2, 3ertrd 6497 . 2  |-  ( ph  ->  A R C )
51, 4ersym 6493 1  |-  ( ph  ->  C R A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 3966    Er wer 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-opab 4027  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-er 6481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator