ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr2d GIF version

Theorem ertr2d 6604
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertrd.5 (𝜑𝐴𝑅𝐵)
ertrd.6 (𝜑𝐵𝑅𝐶)
Assertion
Ref Expression
ertr2d (𝜑𝐶𝑅𝐴)

Proof of Theorem ertr2d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertrd.5 . . 3 (𝜑𝐴𝑅𝐵)
3 ertrd.6 . . 3 (𝜑𝐵𝑅𝐶)
41, 2, 3ertrd 6603 . 2 (𝜑𝐴𝑅𝐶)
51, 4ersym 6599 1 (𝜑𝐶𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 4029   Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-er 6587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator