ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr3d Unicode version

Theorem ertr3d 6256
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertr3d.5  |-  ( ph  ->  B R A )
ertr3d.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertr3d  |-  ( ph  ->  A R C )

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2  |-  ( ph  ->  R  Er  X )
2 ertr3d.5 . . 3  |-  ( ph  ->  B R A )
31, 2ersym 6250 . 2  |-  ( ph  ->  A R B )
4 ertr3d.6 . 2  |-  ( ph  ->  B R C )
51, 3, 4ertrd 6254 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 3820    Er wer 6235
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3931  ax-pow 3983  ax-pr 4009
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-br 3821  df-opab 3875  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-er 6238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator