ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr3d Unicode version

Theorem ertr3d 6651
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1  |-  ( ph  ->  R  Er  X )
ertr3d.5  |-  ( ph  ->  B R A )
ertr3d.6  |-  ( ph  ->  B R C )
Assertion
Ref Expression
ertr3d  |-  ( ph  ->  A R C )

Proof of Theorem ertr3d
StepHypRef Expression
1 ersymb.1 . 2  |-  ( ph  ->  R  Er  X )
2 ertr3d.5 . . 3  |-  ( ph  ->  B R A )
31, 2ersym 6645 . 2  |-  ( ph  ->  A R B )
4 ertr3d.6 . 2  |-  ( ph  ->  B R C )
51, 3, 4ertrd 6649 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   class class class wbr 4051    Er wer 6630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-er 6633
This theorem is referenced by:  xmetresbl  14987
  Copyright terms: Public domain W3C validator