ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcval Unicode version

Theorem pcval 12734
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pcval  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pcval
Dummy variables  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  P  e.  Prime )
2 simprl 529 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
3 ifnefalse 3590 . . . . 5  |-  ( N  =/=  0  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
43ad2antll 491 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
5 pcval.1 . . . . . 6  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
6 pcval.2 . . . . . 6  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
75, 6pceu 12733 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
8 euiotaex 5267 . . . . 5  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )  e. 
_V )
97, 8syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )  e. 
_V )
104, 9eqeltrd 2284 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  e.  _V )
11 simpr 110 . . . . . 6  |-  ( ( p  =  P  /\  r  =  N )  ->  r  =  N )
1211eqeq1d 2216 . . . . 5  |-  ( ( p  =  P  /\  r  =  N )  ->  ( r  =  0  <-> 
N  =  0 ) )
13 eqeq1 2214 . . . . . . . 8  |-  ( r  =  N  ->  (
r  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
14 oveq1 5974 . . . . . . . . . . . . . 14  |-  ( p  =  P  ->  (
p ^ n )  =  ( P ^
n ) )
1514breq1d 4069 . . . . . . . . . . . . 13  |-  ( p  =  P  ->  (
( p ^ n
)  ||  x  <->  ( P ^ n )  ||  x ) )
1615rabbidv 2765 . . . . . . . . . . . 12  |-  ( p  =  P  ->  { n  e.  NN0  |  ( p ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
)
1716supeq1d 7115 . . . . . . . . . . 11  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  ) )
1817, 5eqtr4di 2258 . . . . . . . . . 10  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  =  S )
1914breq1d 4069 . . . . . . . . . . . . 13  |-  ( p  =  P  ->  (
( p ^ n
)  ||  y  <->  ( P ^ n )  ||  y ) )
2019rabbidv 2765 . . . . . . . . . . . 12  |-  ( p  =  P  ->  { n  e.  NN0  |  ( p ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
)
2120supeq1d 7115 . . . . . . . . . . 11  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )
2221, 6eqtr4di 2258 . . . . . . . . . 10  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )  =  T )
2318, 22oveq12d 5985 . . . . . . . . 9  |-  ( p  =  P  ->  ( sup ( { n  e. 
NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  T ) )
2423eqeq2d 2219 . . . . . . . 8  |-  ( p  =  P  ->  (
z  =  ( sup ( { n  e. 
NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
)  <->  z  =  ( S  -  T ) ) )
2513, 24bi2anan9r 607 . . . . . . 7  |-  ( ( p  =  P  /\  r  =  N )  ->  ( ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) ) ) )
26252rexbidv 2533 . . . . . 6  |-  ( ( p  =  P  /\  r  =  N )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
2726iotabidv 5273 . . . . 5  |-  ( ( p  =  P  /\  r  =  N )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
2812, 27ifbieq2d 3604 . . . 4  |-  ( ( p  =  P  /\  r  =  N )  ->  if ( r  =  0 , +oo , 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) ) )
29 df-pc 12723 . . . 4  |-  pCnt  =  ( p  e.  Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) ) )
3028, 29ovmpoga 6098 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  QQ  /\  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  e.  _V )  -> 
( P  pCnt  N
)  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) ) )
311, 2, 10, 30syl3anc 1250 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) ) )
3231, 4eqtrd 2240 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E!weu 2055    e. wcel 2178    =/= wne 2378   E.wrex 2487   {crab 2490   _Vcvv 2776   ifcif 3579   class class class wbr 4059   iotacio 5249  (class class class)co 5967   supcsup 7110   RRcr 7959   0cc0 7960   +oocpnf 8139    < clt 8142    - cmin 8278    / cdiv 8780   NNcn 9071   NN0cn0 9330   ZZcz 9407   QQcq 9775   ^cexp 10720    || cdvds 12213   Primecprime 12544    pCnt cpc 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by:  pczpre  12735  pcdiv  12740
  Copyright terms: Public domain W3C validator