ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcval Unicode version

Theorem pcval 12237
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pcval  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pcval
Dummy variables  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  P  e.  Prime )
2 simprl 526 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
3 ifnefalse 3536 . . . . 5  |-  ( N  =/=  0  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
43ad2antll 488 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
5 pcval.1 . . . . . 6  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
6 pcval.2 . . . . . 6  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
75, 6pceu 12236 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
8 euiotaex 5174 . . . . 5  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )  e. 
_V )
97, 8syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )  e. 
_V )
104, 9eqeltrd 2247 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  e.  _V )
11 simpr 109 . . . . . 6  |-  ( ( p  =  P  /\  r  =  N )  ->  r  =  N )
1211eqeq1d 2179 . . . . 5  |-  ( ( p  =  P  /\  r  =  N )  ->  ( r  =  0  <-> 
N  =  0 ) )
13 eqeq1 2177 . . . . . . . 8  |-  ( r  =  N  ->  (
r  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
14 oveq1 5857 . . . . . . . . . . . . . 14  |-  ( p  =  P  ->  (
p ^ n )  =  ( P ^
n ) )
1514breq1d 3997 . . . . . . . . . . . . 13  |-  ( p  =  P  ->  (
( p ^ n
)  ||  x  <->  ( P ^ n )  ||  x ) )
1615rabbidv 2719 . . . . . . . . . . . 12  |-  ( p  =  P  ->  { n  e.  NN0  |  ( p ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
)
1716supeq1d 6960 . . . . . . . . . . 11  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  ) )
1817, 5eqtr4di 2221 . . . . . . . . . 10  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  =  S )
1914breq1d 3997 . . . . . . . . . . . . 13  |-  ( p  =  P  ->  (
( p ^ n
)  ||  y  <->  ( P ^ n )  ||  y ) )
2019rabbidv 2719 . . . . . . . . . . . 12  |-  ( p  =  P  ->  { n  e.  NN0  |  ( p ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
)
2120supeq1d 6960 . . . . . . . . . . 11  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )
2221, 6eqtr4di 2221 . . . . . . . . . 10  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )  =  T )
2318, 22oveq12d 5868 . . . . . . . . 9  |-  ( p  =  P  ->  ( sup ( { n  e. 
NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  T ) )
2423eqeq2d 2182 . . . . . . . 8  |-  ( p  =  P  ->  (
z  =  ( sup ( { n  e. 
NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
)  <->  z  =  ( S  -  T ) ) )
2513, 24bi2anan9r 602 . . . . . . 7  |-  ( ( p  =  P  /\  r  =  N )  ->  ( ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) ) ) )
26252rexbidv 2495 . . . . . 6  |-  ( ( p  =  P  /\  r  =  N )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
2726iotabidv 5179 . . . . 5  |-  ( ( p  =  P  /\  r  =  N )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
2812, 27ifbieq2d 3549 . . . 4  |-  ( ( p  =  P  /\  r  =  N )  ->  if ( r  =  0 , +oo , 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) ) )
29 df-pc 12226 . . . 4  |-  pCnt  =  ( p  e.  Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) ) )
3028, 29ovmpoga 5979 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  QQ  /\  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  e.  _V )  -> 
( P  pCnt  N
)  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) ) )
311, 2, 10, 30syl3anc 1233 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) ) )
3231, 4eqtrd 2203 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E!weu 2019    e. wcel 2141    =/= wne 2340   E.wrex 2449   {crab 2452   _Vcvv 2730   ifcif 3525   class class class wbr 3987   iotacio 5156  (class class class)co 5850   supcsup 6955   RRcr 7760   0cc0 7761   +oocpnf 7938    < clt 7941    - cmin 8077    / cdiv 8576   NNcn 8865   NN0cn0 9122   ZZcz 9199   QQcq 9565   ^cexp 10462    || cdvds 11736   Primecprime 12048    pCnt cpc 12225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-1o 6392  df-2o 6393  df-er 6509  df-en 6715  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-dvds 11737  df-gcd 11885  df-prm 12049  df-pc 12226
This theorem is referenced by:  pczpre  12238  pcdiv  12243
  Copyright terms: Public domain W3C validator