ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcval Unicode version

Theorem pcval 12224
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pcval  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pcval
Dummy variables  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  P  e.  Prime )
2 simprl 521 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
3 ifnefalse 3530 . . . . 5  |-  ( N  =/=  0  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
43ad2antll 483 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
5 pcval.1 . . . . . 6  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
6 pcval.2 . . . . . 6  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
75, 6pceu 12223 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
8 euiotaex 5168 . . . . 5  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )  e. 
_V )
97, 8syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )  e. 
_V )
104, 9eqeltrd 2242 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  e.  _V )
11 simpr 109 . . . . . 6  |-  ( ( p  =  P  /\  r  =  N )  ->  r  =  N )
1211eqeq1d 2174 . . . . 5  |-  ( ( p  =  P  /\  r  =  N )  ->  ( r  =  0  <-> 
N  =  0 ) )
13 eqeq1 2172 . . . . . . . 8  |-  ( r  =  N  ->  (
r  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
14 oveq1 5848 . . . . . . . . . . . . . 14  |-  ( p  =  P  ->  (
p ^ n )  =  ( P ^
n ) )
1514breq1d 3991 . . . . . . . . . . . . 13  |-  ( p  =  P  ->  (
( p ^ n
)  ||  x  <->  ( P ^ n )  ||  x ) )
1615rabbidv 2714 . . . . . . . . . . . 12  |-  ( p  =  P  ->  { n  e.  NN0  |  ( p ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
)
1716supeq1d 6948 . . . . . . . . . . 11  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  ) )
1817, 5eqtr4di 2216 . . . . . . . . . 10  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  =  S )
1914breq1d 3991 . . . . . . . . . . . . 13  |-  ( p  =  P  ->  (
( p ^ n
)  ||  y  <->  ( P ^ n )  ||  y ) )
2019rabbidv 2714 . . . . . . . . . . . 12  |-  ( p  =  P  ->  { n  e.  NN0  |  ( p ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
)
2120supeq1d 6948 . . . . . . . . . . 11  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )
2221, 6eqtr4di 2216 . . . . . . . . . 10  |-  ( p  =  P  ->  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )  =  T )
2318, 22oveq12d 5859 . . . . . . . . 9  |-  ( p  =  P  ->  ( sup ( { n  e. 
NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  T ) )
2423eqeq2d 2177 . . . . . . . 8  |-  ( p  =  P  ->  (
z  =  ( sup ( { n  e. 
NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
)  <->  z  =  ( S  -  T ) ) )
2513, 24bi2anan9r 597 . . . . . . 7  |-  ( ( p  =  P  /\  r  =  N )  ->  ( ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) ) ) )
26252rexbidv 2490 . . . . . 6  |-  ( ( p  =  P  /\  r  =  N )  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
2726iotabidv 5173 . . . . 5  |-  ( ( p  =  P  /\  r  =  N )  ->  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
2812, 27ifbieq2d 3543 . . . 4  |-  ( ( p  =  P  /\  r  =  N )  ->  if ( r  =  0 , +oo , 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) ) )
29 df-pc 12213 . . . 4  |-  pCnt  =  ( p  e.  Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( r  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n
)  ||  y } ,  RR ,  <  )
) ) ) ) )
3028, 29ovmpoga 5967 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  QQ  /\  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )  e.  _V )  -> 
( P  pCnt  N
)  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) ) )
311, 2, 10, 30syl3anc 1228 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  if ( N  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) ) )
3231, 4eqtrd 2198 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E!weu 2014    e. wcel 2136    =/= wne 2335   E.wrex 2444   {crab 2447   _Vcvv 2725   ifcif 3519   class class class wbr 3981   iotacio 5150  (class class class)co 5841   supcsup 6943   RRcr 7748   0cc0 7749   +oocpnf 7926    < clt 7929    - cmin 8065    / cdiv 8564   NNcn 8853   NN0cn0 9110   ZZcz 9187   QQcq 9553   ^cexp 10450    || cdvds 11723   Primecprime 12035    pCnt cpc 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036  df-pc 12213
This theorem is referenced by:  pczpre  12225  pcdiv  12230
  Copyright terms: Public domain W3C validator