Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfvex | Unicode version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5216 | . 2 | |
2 | funfveu 5520 | . . 3 | |
3 | euiotaex 5186 | . . 3 | |
4 | 2, 3 | syl 14 | . 2 |
5 | 1, 4 | eqeltrid 2262 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 weu 2024 wcel 2146 cvv 2735 class class class wbr 3998 cdm 4620 cio 5168 wfun 5202 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 |
This theorem is referenced by: fnbrfvb 5548 fvelrnb 5555 funimass4 5558 fvelimab 5564 fniinfv 5566 funfvdm 5571 dmfco 5576 fvco2 5577 eqfnfv 5605 fndmdif 5613 fndmin 5615 fvimacnvi 5622 fvimacnv 5623 funconstss 5626 fniniseg 5628 fniniseg2 5630 fnniniseg2 5631 rexsupp 5632 fvelrn 5639 rexrn 5645 ralrn 5646 dff3im 5653 fmptco 5674 fsn2 5682 fnressn 5694 resfunexg 5729 eufnfv 5738 funfvima3 5741 rexima 5746 ralima 5747 fniunfv 5753 elunirn 5757 dff13 5759 foeqcnvco 5781 f1eqcocnv 5782 isocnv2 5803 isoini 5809 f1oiso 5817 fnovex 5898 suppssof1 6090 offveqb 6092 1stexg 6158 2ndexg 6159 smoiso 6293 rdgtfr 6365 rdgruledefgg 6366 rdgivallem 6372 frectfr 6391 frecrdg 6399 en1 6789 fundmen 6796 fnfi 6926 ordiso2 7024 cc2lem 7240 climshft2 11282 slotex 12456 strsetsid 12462 ismgm 12642 plusffvalg 12647 grpidvalg 12658 fn0g 12660 issgrp 12675 ismnddef 12685 ismhm 12716 issubm 12726 0mhm 12735 grppropstrg 12757 grpinvfvalg 12777 grpinvval 12778 grpinvfng 12779 grpsubfvalg 12780 grpsubval 12781 grplactfval 12832 mulgfvalg 12846 mulgval 12847 mulgfng 12848 mgptopng 12937 dfur2g 12942 issrg 12945 isring 12980 |
Copyright terms: Public domain | W3C validator |