![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfvex | Unicode version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | funfveu 5567 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | euiotaex 5231 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltrid 2280 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 |
This theorem is referenced by: fnbrfvb 5597 fvelrnb 5604 funimass4 5607 fvelimab 5613 fniinfv 5615 funfvdm 5620 dmfco 5625 fvco2 5626 eqfnfv 5655 fndmdif 5663 fndmin 5665 fvimacnvi 5672 fvimacnv 5673 funconstss 5676 fniniseg 5678 fniniseg2 5680 fnniniseg2 5681 rexsupp 5682 fvelrn 5689 rexrn 5695 ralrn 5696 dff3im 5703 fmptco 5724 fsn2 5732 fnressn 5744 resfunexg 5779 eufnfv 5789 funfvima3 5792 rexima 5797 ralima 5798 fniunfv 5805 elunirn 5809 dff13 5811 foeqcnvco 5833 f1eqcocnv 5834 isocnv2 5855 isoini 5861 f1oiso 5869 fnovex 5951 suppssof1 6148 offveqb 6150 1stexg 6220 2ndexg 6221 smoiso 6355 rdgtfr 6427 rdgruledefgg 6428 rdgivallem 6434 frectfr 6453 frecrdg 6461 en1 6853 fundmen 6860 fnfi 6995 ordiso2 7094 cc2lem 7326 climshft2 11449 slotex 12645 strsetsid 12651 ressbas2d 12686 ressbasid 12688 strressid 12689 ressval3d 12690 prdsex 12880 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfn 12900 imasaddval 12901 imasaddf 12902 imasmulfn 12903 imasmulval 12904 imasmulf 12905 qusval 12906 qusex 12908 qusaddvallemg 12916 qusaddflemg 12917 qusaddval 12918 qusaddf 12919 qusmulval 12920 qusmulf 12921 xpsfeq 12928 xpsval 12935 ismgm 12940 plusffvalg 12945 grpidvalg 12956 fn0g 12958 fngsum 12971 igsumvalx 12972 gsumfzval 12974 gsumress 12978 gsum0g 12979 issgrp 12986 ismnddef 12999 issubmnd 13023 ress0g 13024 ismhm 13033 mhmex 13034 issubm 13044 0mhm 13058 grppropstrg 13091 grpinvfvalg 13114 grpinvval 13115 grpinvfng 13116 grpsubfvalg 13117 grpsubval 13118 grpressid 13133 grplactfval 13173 qusgrp2 13183 mulgfvalg 13191 mulgval 13192 mulgex 13193 mulgfng 13194 issubg 13243 subgex 13246 issubg2m 13259 isnsg 13272 releqgg 13290 eqgex 13291 eqgfval 13292 eqgen 13297 isghm 13313 ablressid 13405 mgptopng 13425 isrng 13430 rngressid 13450 qusrng 13454 dfur2g 13458 issrg 13461 isring 13496 ringidss 13525 ringressid 13559 qusring2 13562 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrex 13594 unitgrp 13612 unitabl 13613 invrfvald 13618 unitlinv 13622 unitrinv 13623 dvrfvald 13629 rdivmuldivd 13640 invrpropdg 13645 dfrhm2 13650 rhmex 13653 rhmunitinv 13674 isnzr2 13680 issubrng 13695 issubrg 13717 subrgugrp 13736 rrgval 13758 isdomn 13765 aprval 13778 aprap 13782 islmod 13787 scaffvalg 13802 rmodislmod 13847 lssex 13850 lsssetm 13852 islssm 13853 islssmg 13854 islss3 13875 lspfval 13884 lspval 13886 lspcl 13887 lspex 13891 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 rlmsubg 13954 rlmvnegg 13961 ixpsnbasval 13962 lidlex 13969 rspex 13970 lidlss 13972 lidlrsppropdg 13991 qusrhm 14024 psrval 14152 fnpsr 14153 psrbasg 14159 psrelbas 14160 psrplusgg 14162 psraddcl 14164 |
Copyright terms: Public domain | W3C validator |