| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvex | Unicode version | ||
| Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| funfvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5287 |
. 2
| |
| 2 | funfveu 5601 |
. . 3
| |
| 3 | euiotaex 5256 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | 1, 4 | eqeltrid 2293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 |
| This theorem is referenced by: fnbrfvb 5631 fvelrnb 5638 funimass4 5641 fvelimab 5647 fniinfv 5649 funfvdm 5654 dmfco 5659 fvco2 5660 eqfnfv 5689 fndmdif 5697 fndmin 5699 fvimacnvi 5706 fvimacnv 5707 funconstss 5710 fniniseg 5712 fniniseg2 5714 fnniniseg2 5715 rexsupp 5716 fvelrn 5723 rexrn 5729 ralrn 5730 dff3im 5737 fmptco 5758 fsn2 5766 funiun 5773 fnressn 5782 resfunexg 5817 eufnfv 5827 funfvima3 5830 rexima 5835 ralima 5836 fniunfv 5843 elunirn 5847 dff13 5849 foeqcnvco 5871 f1eqcocnv 5872 isocnv2 5893 isoini 5899 f1oiso 5907 fnovex 5989 suppssof1 6188 offveqb 6190 1stexg 6265 2ndexg 6266 smoiso 6400 rdgtfr 6472 rdgruledefgg 6473 rdgivallem 6479 frectfr 6498 frecrdg 6506 en1 6903 fundmen 6911 fnfi 7052 ordiso2 7151 cc2lem 7393 climshft2 11687 slotex 12929 strsetsid 12935 ressbas2d 12970 ressbasid 12972 strressid 12973 ressval3d 12974 prdsex 13171 prdsval 13175 prdsbaslemss 13176 prdsbas 13178 prdsplusg 13179 prdsmulr 13180 pwsbas 13194 pwselbasb 13195 pwssnf1o 13200 imasex 13207 imasival 13208 imasbas 13209 imasplusg 13210 imasmulr 13211 imasaddfn 13219 imasaddval 13220 imasaddf 13221 imasmulfn 13222 imasmulval 13223 imasmulf 13224 qusval 13225 qusex 13227 qusaddvallemg 13235 qusaddflemg 13236 qusaddval 13237 qusaddf 13238 qusmulval 13239 qusmulf 13240 xpsfeq 13247 xpsval 13254 ismgm 13259 plusffvalg 13264 grpidvalg 13275 fn0g 13277 fngsum 13290 igsumvalx 13291 gsumfzval 13293 gsumress 13297 gsum0g 13298 issgrp 13305 ismnddef 13320 issubmnd 13344 ress0g 13345 ismhm 13363 mhmex 13364 issubm 13374 0mhm 13388 grppropstrg 13421 grpinvfvalg 13444 grpinvval 13445 grpinvfng 13446 grpsubfvalg 13447 grpsubval 13448 grpressid 13463 grplactfval 13503 qusgrp2 13519 mulgfvalg 13527 mulgval 13528 mulgex 13529 mulgfng 13530 issubg 13579 subgex 13582 issubg2m 13595 isnsg 13608 releqgg 13626 eqgex 13627 eqgfval 13628 eqgen 13633 isghm 13649 ablressid 13741 mgptopng 13761 isrng 13766 rngressid 13786 qusrng 13790 dfur2g 13794 issrg 13797 isring 13832 ringidss 13861 ringressid 13895 qusring2 13898 reldvdsrsrg 13924 dvdsrvald 13925 dvdsrex 13930 unitgrp 13948 unitabl 13949 invrfvald 13954 unitlinv 13958 unitrinv 13959 dvrfvald 13965 rdivmuldivd 13976 invrpropdg 13981 dfrhm2 13986 rhmex 13989 rhmunitinv 14010 isnzr2 14016 issubrng 14031 issubrg 14053 subrgugrp 14072 rrgval 14094 isdomn 14101 aprval 14114 aprap 14118 islmod 14123 scaffvalg 14138 rmodislmod 14183 lssex 14186 lsssetm 14188 islssm 14189 islssmg 14190 islss3 14211 lspfval 14220 lspval 14222 lspcl 14223 lspex 14227 sraval 14269 sralemg 14270 srascag 14274 sravscag 14275 sraipg 14276 sraex 14278 rlmsubg 14290 rlmvnegg 14297 ixpsnbasval 14298 lidlex 14305 rspex 14306 lidlss 14308 lidlrsppropdg 14327 qusrhm 14360 mopnset 14384 psrval 14498 fnpsr 14499 psrbasg 14506 psrelbas 14507 psrplusgg 14510 psraddcl 14512 psr0cl 14513 psrnegcl 14515 psr1clfi 14520 mplvalcoe 14522 fnmpl 14525 mplplusgg 14535 vtxvalg 15685 vtxex 15687 |
| Copyright terms: Public domain | W3C validator |