Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfvex | Unicode version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5175 | . 2 | |
2 | funfveu 5478 | . . 3 | |
3 | euiotaex 5148 | . . 3 | |
4 | 2, 3 | syl 14 | . 2 |
5 | 1, 4 | eqeltrid 2244 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 weu 2006 wcel 2128 cvv 2712 class class class wbr 3965 cdm 4583 cio 5130 wfun 5161 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 |
This theorem is referenced by: fnbrfvb 5506 fvelrnb 5513 funimass4 5516 fvelimab 5521 fniinfv 5523 funfvdm 5528 dmfco 5533 fvco2 5534 eqfnfv 5562 fndmdif 5569 fndmin 5571 fvimacnvi 5578 fvimacnv 5579 funconstss 5582 fniniseg 5584 fniniseg2 5586 fnniniseg2 5587 rexsupp 5588 fvelrn 5595 rexrn 5601 ralrn 5602 dff3im 5609 fmptco 5630 fsn2 5638 fnressn 5650 resfunexg 5685 eufnfv 5692 funfvima3 5695 rexima 5700 ralima 5701 fniunfv 5707 elunirn 5711 dff13 5713 foeqcnvco 5735 f1eqcocnv 5736 isocnv2 5757 isoini 5763 f1oiso 5771 fnovex 5848 suppssof1 6043 offveqb 6045 1stexg 6109 2ndexg 6110 smoiso 6243 rdgtfr 6315 rdgruledefgg 6316 rdgivallem 6322 frectfr 6341 frecrdg 6349 en1 6737 fundmen 6744 fnfi 6874 ordiso2 6969 cc2lem 7169 climshft2 11185 slotex 12177 strsetsid 12183 |
Copyright terms: Public domain | W3C validator |