Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grp1inv | Unicode version |
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
Ref | Expression |
---|---|
grp1.m |
Ref | Expression |
---|---|
grp1inv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grp1.m | . . . . 5 | |
2 | 1 | grp1 12827 | . . . 4 |
3 | eqid 2171 | . . . . 5 | |
4 | eqid 2171 | . . . . 5 | |
5 | 3, 4 | grpinvf 12772 | . . . 4 |
6 | 2, 5 | syl 14 | . . 3 |
7 | snexg 4171 | . . . . 5 | |
8 | opexg 4214 | . . . . . . . 8 | |
9 | 8 | anidms 395 | . . . . . . 7 |
10 | opexg 4214 | . . . . . . 7 | |
11 | 9, 10 | mpancom 420 | . . . . . 6 |
12 | snexg 4171 | . . . . . 6 | |
13 | 11, 12 | syl 14 | . . . . 5 |
14 | 1 | grpbaseg 12530 | . . . . 5 |
15 | 7, 13, 14 | syl2anc 409 | . . . 4 |
16 | 15, 15 | feq23d 5345 | . . 3 |
17 | 6, 16 | mpbird 166 | . 2 |
18 | fsng 5673 | . . . 4 | |
19 | 18 | anidms 395 | . . 3 |
20 | simpr 109 | . . . . 5 | |
21 | restidsing 4948 | . . . . . . 7 | |
22 | xpsng 5675 | . . . . . . . 8 | |
23 | 22 | anidms 395 | . . . . . . 7 |
24 | 21, 23 | eqtr2id 2217 | . . . . . 6 |
25 | 24 | adantr 274 | . . . . 5 |
26 | 20, 25 | eqtrd 2204 | . . . 4 |
27 | 26 | ex 114 | . . 3 |
28 | 19, 27 | sylbid 149 | . 2 |
29 | 17, 28 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1349 wcel 2142 cvv 2731 csn 3584 cpr 3585 cop 3587 cid 4274 cxp 4610 cres 4614 wf 5196 cfv 5200 cnx 12417 cbs 12420 cplusg 12484 cgrp 12730 cminusg 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-i2m1 7883 ax-0lt1 7884 ax-0id 7886 ax-rnegex 7887 ax-pre-ltirr 7890 ax-pre-ltadd 7894 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-pnf 7960 df-mnf 7961 df-ltxr 7963 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 df-minusg 12734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |