ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1inv Unicode version

Theorem grp1inv 13179
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
grp1inv  |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I } ) )

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . . 5  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21grp1 13178 . . . 4  |-  ( I  e.  V  ->  M  e.  Grp )
3 eqid 2193 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
4 eqid 2193 . . . . 5  |-  ( invg `  M )  =  ( invg `  M )
53, 4grpinvf 13119 . . . 4  |-  ( M  e.  Grp  ->  ( invg `  M ) : ( Base `  M
) --> ( Base `  M
) )
62, 5syl 14 . . 3  |-  ( I  e.  V  ->  ( invg `  M ) : ( Base `  M
) --> ( Base `  M
) )
7 snexg 4213 . . . . 5  |-  ( I  e.  V  ->  { I }  e.  _V )
8 opexg 4257 . . . . . . . 8  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
98anidms 397 . . . . . . 7  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
10 opexg 4257 . . . . . . 7  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
119, 10mpancom 422 . . . . . 6  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
12 snexg 4213 . . . . . 6  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
1311, 12syl 14 . . . . 5  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
141grpbaseg 12744 . . . . 5  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
157, 13, 14syl2anc 411 . . . 4  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
1615, 15feq23d 5399 . . 3  |-  ( I  e.  V  ->  (
( invg `  M ) : {
I } --> { I } 
<->  ( invg `  M ) : (
Base `  M ) --> ( Base `  M )
) )
176, 16mpbird 167 . 2  |-  ( I  e.  V  ->  ( invg `  M ) : { I } --> { I } )
18 fsng 5731 . . . 4  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( ( invg `  M ) : {
I } --> { I } 
<->  ( invg `  M )  =  { <. I ,  I >. } ) )
1918anidms 397 . . 3  |-  ( I  e.  V  ->  (
( invg `  M ) : {
I } --> { I } 
<->  ( invg `  M )  =  { <. I ,  I >. } ) )
20 simpr 110 . . . . 5  |-  ( ( I  e.  V  /\  ( invg `  M
)  =  { <. I ,  I >. } )  ->  ( invg `  M )  =  { <. I ,  I >. } )
21 restidsing 4998 . . . . . . 7  |-  (  _I  |`  { I } )  =  ( { I }  X.  { I }
)
22 xpsng 5733 . . . . . . . 8  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( { I }  X.  { I } )  =  { <. I ,  I >. } )
2322anidms 397 . . . . . . 7  |-  ( I  e.  V  ->  ( { I }  X.  { I } )  =  { <. I ,  I >. } )
2421, 23eqtr2id 2239 . . . . . 6  |-  ( I  e.  V  ->  { <. I ,  I >. }  =  (  _I  |`  { I } ) )
2524adantr 276 . . . . 5  |-  ( ( I  e.  V  /\  ( invg `  M
)  =  { <. I ,  I >. } )  ->  { <. I ,  I >. }  =  (  _I  |`  { I } ) )
2620, 25eqtrd 2226 . . . 4  |-  ( ( I  e.  V  /\  ( invg `  M
)  =  { <. I ,  I >. } )  ->  ( invg `  M )  =  (  _I  |`  { I } ) )
2726ex 115 . . 3  |-  ( I  e.  V  ->  (
( invg `  M )  =  { <. I ,  I >. }  ->  ( invg `  M )  =  (  _I  |`  { I } ) ) )
2819, 27sylbid 150 . 2  |-  ( I  e.  V  ->  (
( invg `  M ) : {
I } --> { I }  ->  ( invg `  M )  =  (  _I  |`  { I } ) ) )
2917, 28mpd 13 1  |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618   {cpr 3619   <.cop 3621    _I cid 4319    X. cxp 4657    |` cres 4661   -->wf 5250   ` cfv 5254   ndxcnx 12615   Basecbs 12618   +g cplusg 12695   Grpcgrp 13072   invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator