ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1inv Unicode version

Theorem grp1inv 13554
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
grp1inv  |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I } ) )

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . . 5  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21grp1 13553 . . . 4  |-  ( I  e.  V  ->  M  e.  Grp )
3 eqid 2207 . . . . 5  |-  ( Base `  M )  =  (
Base `  M )
4 eqid 2207 . . . . 5  |-  ( invg `  M )  =  ( invg `  M )
53, 4grpinvf 13494 . . . 4  |-  ( M  e.  Grp  ->  ( invg `  M ) : ( Base `  M
) --> ( Base `  M
) )
62, 5syl 14 . . 3  |-  ( I  e.  V  ->  ( invg `  M ) : ( Base `  M
) --> ( Base `  M
) )
7 snexg 4244 . . . . 5  |-  ( I  e.  V  ->  { I }  e.  _V )
8 opexg 4290 . . . . . . . 8  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
98anidms 397 . . . . . . 7  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
10 opexg 4290 . . . . . . 7  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
119, 10mpancom 422 . . . . . 6  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
12 snexg 4244 . . . . . 6  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
1311, 12syl 14 . . . . 5  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
141grpbaseg 13074 . . . . 5  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
157, 13, 14syl2anc 411 . . . 4  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
1615, 15feq23d 5441 . . 3  |-  ( I  e.  V  ->  (
( invg `  M ) : {
I } --> { I } 
<->  ( invg `  M ) : (
Base `  M ) --> ( Base `  M )
) )
176, 16mpbird 167 . 2  |-  ( I  e.  V  ->  ( invg `  M ) : { I } --> { I } )
18 fsng 5776 . . . 4  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( ( invg `  M ) : {
I } --> { I } 
<->  ( invg `  M )  =  { <. I ,  I >. } ) )
1918anidms 397 . . 3  |-  ( I  e.  V  ->  (
( invg `  M ) : {
I } --> { I } 
<->  ( invg `  M )  =  { <. I ,  I >. } ) )
20 simpr 110 . . . . 5  |-  ( ( I  e.  V  /\  ( invg `  M
)  =  { <. I ,  I >. } )  ->  ( invg `  M )  =  { <. I ,  I >. } )
21 restidsing 5034 . . . . . . 7  |-  (  _I  |`  { I } )  =  ( { I }  X.  { I }
)
22 xpsng 5778 . . . . . . . 8  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( { I }  X.  { I } )  =  { <. I ,  I >. } )
2322anidms 397 . . . . . . 7  |-  ( I  e.  V  ->  ( { I }  X.  { I } )  =  { <. I ,  I >. } )
2421, 23eqtr2id 2253 . . . . . 6  |-  ( I  e.  V  ->  { <. I ,  I >. }  =  (  _I  |`  { I } ) )
2524adantr 276 . . . . 5  |-  ( ( I  e.  V  /\  ( invg `  M
)  =  { <. I ,  I >. } )  ->  { <. I ,  I >. }  =  (  _I  |`  { I } ) )
2620, 25eqtrd 2240 . . . 4  |-  ( ( I  e.  V  /\  ( invg `  M
)  =  { <. I ,  I >. } )  ->  ( invg `  M )  =  (  _I  |`  { I } ) )
2726ex 115 . . 3  |-  ( I  e.  V  ->  (
( invg `  M )  =  { <. I ,  I >. }  ->  ( invg `  M )  =  (  _I  |`  { I } ) ) )
2819, 27sylbid 150 . 2  |-  ( I  e.  V  ->  (
( invg `  M ) : {
I } --> { I }  ->  ( invg `  M )  =  (  _I  |`  { I } ) ) )
2917, 28mpd 13 1  |-  ( I  e.  V  ->  ( invg `  M )  =  (  _I  |`  { I } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643   {cpr 3644   <.cop 3646    _I cid 4353    X. cxp 4691    |` cres 4695   -->wf 5286   ` cfv 5290   ndxcnx 12944   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   invgcminusg 13448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator