ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff Unicode version

Theorem nff 5334
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1  |-  F/_ x F
nff.2  |-  F/_ x A
nff.3  |-  F/_ x B
Assertion
Ref Expression
nff  |-  F/ x  F : A --> B

Proof of Theorem nff
StepHypRef Expression
1 df-f 5192 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 nff.1 . . . 4  |-  F/_ x F
3 nff.2 . . . 4  |-  F/_ x A
42, 3nffn 5284 . . 3  |-  F/ x  F  Fn  A
52nfrn 4849 . . . 4  |-  F/_ x ran  F
6 nff.3 . . . 4  |-  F/_ x B
75, 6nfss 3135 . . 3  |-  F/ x ran  F  C_  B
84, 7nfan 1553 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  C_  B
)
91, 8nfxfr 1462 1  |-  F/ x  F : A --> B
Colors of variables: wff set class
Syntax hints:    /\ wa 103   F/wnf 1448   F/_wnfc 2295    C_ wss 3116   ran crn 4605    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  nff1  5391
  Copyright terms: Public domain W3C validator