ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff Unicode version

Theorem nff 5470
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1  |-  F/_ x F
nff.2  |-  F/_ x A
nff.3  |-  F/_ x B
Assertion
Ref Expression
nff  |-  F/ x  F : A --> B

Proof of Theorem nff
StepHypRef Expression
1 df-f 5322 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 nff.1 . . . 4  |-  F/_ x F
3 nff.2 . . . 4  |-  F/_ x A
42, 3nffn 5417 . . 3  |-  F/ x  F  Fn  A
52nfrn 4969 . . . 4  |-  F/_ x ran  F
6 nff.3 . . . 4  |-  F/_ x B
75, 6nfss 3217 . . 3  |-  F/ x ran  F  C_  B
84, 7nfan 1611 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  C_  B
)
91, 8nfxfr 1520 1  |-  F/ x  F : A --> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1506   F/_wnfc 2359    C_ wss 3197   ran crn 4720    Fn wfn 5313   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  nff1  5529  nfwrd  11100  lfgrnloopen  15931
  Copyright terms: Public domain W3C validator