ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff Unicode version

Theorem nff 5422
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1  |-  F/_ x F
nff.2  |-  F/_ x A
nff.3  |-  F/_ x B
Assertion
Ref Expression
nff  |-  F/ x  F : A --> B

Proof of Theorem nff
StepHypRef Expression
1 df-f 5275 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 nff.1 . . . 4  |-  F/_ x F
3 nff.2 . . . 4  |-  F/_ x A
42, 3nffn 5370 . . 3  |-  F/ x  F  Fn  A
52nfrn 4923 . . . 4  |-  F/_ x ran  F
6 nff.3 . . . 4  |-  F/_ x B
75, 6nfss 3186 . . 3  |-  F/ x ran  F  C_  B
84, 7nfan 1588 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  C_  B
)
91, 8nfxfr 1497 1  |-  F/ x  F : A --> B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1483   F/_wnfc 2335    C_ wss 3166   ran crn 4676    Fn wfn 5266   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275
This theorem is referenced by:  nff1  5479  nfwrd  11022
  Copyright terms: Public domain W3C validator