Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneq12 | GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
fneq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) | |
2 | simpr 109 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | fneq12d 5280 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 Fn wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 df-fn 5191 |
This theorem is referenced by: tfrlem3ag 6277 tfrlem3a 6278 tfr1onlem3ag 6305 frecfnom 6369 |
Copyright terms: Public domain | W3C validator |