ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12 GIF version

Theorem fneq12 5413
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
fneq12 ((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))

Proof of Theorem fneq12
StepHypRef Expression
1 simpl 109 . 2 ((𝐹 = 𝐺𝐴 = 𝐵) → 𝐹 = 𝐺)
2 simpr 110 . 2 ((𝐹 = 𝐺𝐴 = 𝐵) → 𝐴 = 𝐵)
31, 2fneq12d 5412 1 ((𝐹 = 𝐺𝐴 = 𝐵) → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395   Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320
This theorem is referenced by:  tfrlem3ag  6453  tfrlem3a  6454  tfr1onlem3ag  6481  frecfnom  6545  xnn0nnen  10654
  Copyright terms: Public domain W3C validator