![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fneq12 | GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
fneq12 | ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) | |
2 | simpr 110 | . 2 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | fneq12d 5324 | 1 ⊢ ((𝐹 = 𝐺 ∧ 𝐴 = 𝐵) → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Fn wfn 5227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-fun 5234 df-fn 5235 |
This theorem is referenced by: tfrlem3ag 6329 tfrlem3a 6330 tfr1onlem3ag 6357 frecfnom 6421 |
Copyright terms: Public domain | W3C validator |