ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimadisj Unicode version

Theorem fnimadisj 5211
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fnimadisj  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )

Proof of Theorem fnimadisj
StepHypRef Expression
1 fndm 5190 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
21ineq1d 3244 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  i^i  C )  =  ( A  i^i  C ) )
32eqeq1d 2124 . . 3  |-  ( F  Fn  A  ->  (
( dom  F  i^i  C )  =  (/)  <->  ( A  i^i  C )  =  (/) ) )
43biimpar 293 . 2  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( dom  F  i^i  C )  =  (/) )
5 imadisj 4869 . 2  |-  ( ( F " C )  =  (/)  <->  ( dom  F  i^i  C )  =  (/) )
64, 5sylibr 133 1  |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    i^i cin 3038   (/)c0 3331   dom cdm 4507   "cima 4510    Fn wfn 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-fn 5094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator