Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fn0 | Unicode version |
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5261 | . . 3 | |
2 | fndm 5262 | . . 3 | |
3 | reldm0 4797 | . . . 4 | |
4 | 3 | biimpar 295 | . . 3 |
5 | 1, 2, 4 | syl2anc 409 | . 2 |
6 | fun0 5221 | . . . 4 | |
7 | dm0 4793 | . . . 4 | |
8 | df-fn 5166 | . . . 4 | |
9 | 6, 7, 8 | mpbir2an 927 | . . 3 |
10 | fneq1 5251 | . . 3 | |
11 | 9, 10 | mpbiri 167 | . 2 |
12 | 5, 11 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1332 c0 3390 cdm 4579 wrel 4584 wfun 5157 wfn 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-fun 5165 df-fn 5166 |
This theorem is referenced by: mpt0 5290 f0 5353 f00 5354 f0bi 5355 f1o00 5442 fo00 5443 tpos0 6211 ixp0x 6660 0fz1 9925 |
Copyright terms: Public domain | W3C validator |