ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 Unicode version

Theorem fn0 5394
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0  |-  ( F  Fn  (/)  <->  F  =  (/) )

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5371 . . 3  |-  ( F  Fn  (/)  ->  Rel  F )
2 fndm 5372 . . 3  |-  ( F  Fn  (/)  ->  dom  F  =  (/) )
3 reldm0 4895 . . . 4  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
43biimpar 297 . . 3  |-  ( ( Rel  F  /\  dom  F  =  (/) )  ->  F  =  (/) )
51, 2, 4syl2anc 411 . 2  |-  ( F  Fn  (/)  ->  F  =  (/) )
6 fun0 5331 . . . 4  |-  Fun  (/)
7 dm0 4891 . . . 4  |-  dom  (/)  =  (/)
8 df-fn 5273 . . . 4  |-  ( (/)  Fn  (/) 
<->  ( Fun  (/)  /\  dom  (/)  =  (/) ) )
96, 7, 8mpbir2an 944 . . 3  |-  (/)  Fn  (/)
10 fneq1 5361 . . 3  |-  ( F  =  (/)  ->  ( F  Fn  (/)  <->  (/)  Fn  (/) ) )
119, 10mpbiri 168 . 2  |-  ( F  =  (/)  ->  F  Fn  (/) )
125, 11impbii 126 1  |-  ( F  Fn  (/)  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372   (/)c0 3459   dom cdm 4674   Rel wrel 4679   Fun wfun 5264    Fn wfn 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-fun 5272  df-fn 5273
This theorem is referenced by:  mpt0  5402  f0  5465  f00  5466  f0bi  5467  f1o00  5556  fo00  5557  tpos0  6359  ixp0x  6812  0fz1  10166
  Copyright terms: Public domain W3C validator