ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0 Unicode version

Theorem fn0 5374
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fn0  |-  ( F  Fn  (/)  <->  F  =  (/) )

Proof of Theorem fn0
StepHypRef Expression
1 fnrel 5353 . . 3  |-  ( F  Fn  (/)  ->  Rel  F )
2 fndm 5354 . . 3  |-  ( F  Fn  (/)  ->  dom  F  =  (/) )
3 reldm0 4881 . . . 4  |-  ( Rel 
F  ->  ( F  =  (/)  <->  dom  F  =  (/) ) )
43biimpar 297 . . 3  |-  ( ( Rel  F  /\  dom  F  =  (/) )  ->  F  =  (/) )
51, 2, 4syl2anc 411 . 2  |-  ( F  Fn  (/)  ->  F  =  (/) )
6 fun0 5313 . . . 4  |-  Fun  (/)
7 dm0 4877 . . . 4  |-  dom  (/)  =  (/)
8 df-fn 5258 . . . 4  |-  ( (/)  Fn  (/) 
<->  ( Fun  (/)  /\  dom  (/)  =  (/) ) )
96, 7, 8mpbir2an 944 . . 3  |-  (/)  Fn  (/)
10 fneq1 5343 . . 3  |-  ( F  =  (/)  ->  ( F  Fn  (/)  <->  (/)  Fn  (/) ) )
119, 10mpbiri 168 . 2  |-  ( F  =  (/)  ->  F  Fn  (/) )
125, 11impbii 126 1  |-  ( F  Fn  (/)  <->  F  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   (/)c0 3447   dom cdm 4660   Rel wrel 4665   Fun wfun 5249    Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-fun 5257  df-fn 5258
This theorem is referenced by:  mpt0  5382  f0  5445  f00  5446  f0bi  5447  f1o00  5536  fo00  5537  tpos0  6329  ixp0x  6782  0fz1  10114
  Copyright terms: Public domain W3C validator