ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimaeq0 Unicode version

Theorem fnimaeq0 5148
Description: Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 4807 . 2  |-  ( ( F " B )  =  (/)  <->  ( dom  F  i^i  B )  =  (/) )
2 incom 3193 . . . 4  |-  ( dom 
F  i^i  B )  =  ( B  i^i  dom 
F )
3 fndm 5126 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
43sseq2d 3055 . . . . . 6  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
54biimpar 292 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
6 df-ss 3013 . . . . 5  |-  ( B 
C_  dom  F  <->  ( B  i^i  dom  F )  =  B )
75, 6sylib 121 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( B  i^i  dom  F )  =  B )
82, 7syl5eq 2133 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( dom  F  i^i  B )  =  B )
98eqeq1d 2097 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( dom  F  i^i  B )  =  (/)  <->  B  =  (/) ) )
101, 9syl5bb 191 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290    i^i cin 2999    C_ wss 3000   (/)c0 3287   dom cdm 4452   "cima 4455    Fn wfn 5023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4458  df-cnv 4460  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-fn 5031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator