ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimaeq0 Unicode version

Theorem fnimaeq0 5309
Description: Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 4966 . 2  |-  ( ( F " B )  =  (/)  <->  ( dom  F  i^i  B )  =  (/) )
2 incom 3314 . . . 4  |-  ( dom 
F  i^i  B )  =  ( B  i^i  dom 
F )
3 fndm 5287 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
43sseq2d 3172 . . . . . 6  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
54biimpar 295 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
6 df-ss 3129 . . . . 5  |-  ( B 
C_  dom  F  <->  ( B  i^i  dom  F )  =  B )
75, 6sylib 121 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( B  i^i  dom  F )  =  B )
82, 7syl5eq 2211 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( dom  F  i^i  B )  =  B )
98eqeq1d 2174 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( dom  F  i^i  B )  =  (/)  <->  B  =  (/) ) )
101, 9syl5bb 191 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    i^i cin 3115    C_ wss 3116   (/)c0 3409   dom cdm 4604   "cima 4607    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fn 5191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator