ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimaeq0 Unicode version

Theorem fnimaeq0 5445
Description: Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 5090 . 2  |-  ( ( F " B )  =  (/)  <->  ( dom  F  i^i  B )  =  (/) )
2 incom 3396 . . . 4  |-  ( dom 
F  i^i  B )  =  ( B  i^i  dom 
F )
3 fndm 5420 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
43sseq2d 3254 . . . . . 6  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
54biimpar 297 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
6 df-ss 3210 . . . . 5  |-  ( B 
C_  dom  F  <->  ( B  i^i  dom  F )  =  B )
75, 6sylib 122 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( B  i^i  dom  F )  =  B )
82, 7eqtrid 2274 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( dom  F  i^i  B )  =  B )
98eqeq1d 2238 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( dom  F  i^i  B )  =  (/)  <->  B  =  (/) ) )
101, 9bitrid 192 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    i^i cin 3196    C_ wss 3197   (/)c0 3491   dom cdm 4719   "cima 4722    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fn 5321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator