ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimaeq0 Unicode version

Theorem fnimaeq0 5356
Description: Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
fnimaeq0  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )

Proof of Theorem fnimaeq0
StepHypRef Expression
1 imadisj 5008 . 2  |-  ( ( F " B )  =  (/)  <->  ( dom  F  i^i  B )  =  (/) )
2 incom 3342 . . . 4  |-  ( dom 
F  i^i  B )  =  ( B  i^i  dom 
F )
3 fndm 5334 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
43sseq2d 3200 . . . . . 6  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
54biimpar 297 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
6 df-ss 3157 . . . . 5  |-  ( B 
C_  dom  F  <->  ( B  i^i  dom  F )  =  B )
75, 6sylib 122 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( B  i^i  dom  F )  =  B )
82, 7eqtrid 2234 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( dom  F  i^i  B )  =  B )
98eqeq1d 2198 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( dom  F  i^i  B )  =  (/)  <->  B  =  (/) ) )
101, 9bitrid 192 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( ( F " B )  =  (/)  <->  B  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    i^i cin 3143    C_ wss 3144   (/)c0 3437   dom cdm 4644   "cima 4647    Fn wfn 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-fn 5238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator