Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1d Unicode version

Theorem ineq1d 3276
 Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1
Assertion
Ref Expression
ineq1d

Proof of Theorem ineq1d
StepHypRef Expression
1 ineq1d.1 . 2
2 ineq1 3270 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331   cin 3070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077 This theorem is referenced by:  diftpsn3  3661  disji2  3922  ordpwsucexmid  4485  riinint  4800  fnresdisj  5233  fnimadisj  5243  ecinxp  6504  fiintim  6817  fival  6858  fzval2  9793  fvinim0ffz  10018  fsum1p  11187  restopnb  12350  metrest  12675  qtopbasss  12690
 Copyright terms: Public domain W3C validator