ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1d Unicode version

Theorem ineq1d 3404
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ineq1d  |-  ( ph  ->  ( A  i^i  C
)  =  ( B  i^i  C ) )

Proof of Theorem ineq1d
StepHypRef Expression
1 ineq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ineq1 3398 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  i^i  C
)  =  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  diftpsn3  3809  disji2  4075  ordpwsucexmid  4662  riinint  4985  fnresdisj  5433  fnimadisj  5444  ecinxp  6757  fiintim  7093  fival  7137  fzval2  10207  fvinim0ffz  10447  fsum1p  11929  fprod1p  12110  strressid  13104  restopnb  14855  metrest  15180  qtopbasss  15195
  Copyright terms: Public domain W3C validator