ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1d Unicode version

Theorem ineq1d 3363
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ineq1d  |-  ( ph  ->  ( A  i^i  C
)  =  ( B  i^i  C ) )

Proof of Theorem ineq1d
StepHypRef Expression
1 ineq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ineq1 3357 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  i^i  C
)  =  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  diftpsn3  3763  disji2  4026  ordpwsucexmid  4606  riinint  4927  fnresdisj  5368  fnimadisj  5378  ecinxp  6669  fiintim  6992  fival  7036  fzval2  10086  fvinim0ffz  10317  fsum1p  11583  fprod1p  11764  strressid  12749  restopnb  14417  metrest  14742  qtopbasss  14757
  Copyright terms: Public domain W3C validator