| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| Ref | Expression |
|---|---|
| ineq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq1 3358 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: diftpsn3 3764 disji2 4027 ordpwsucexmid 4607 riinint 4928 fnresdisj 5371 fnimadisj 5381 ecinxp 6678 fiintim 7001 fival 7045 fzval2 10103 fvinim0ffz 10334 fsum1p 11600 fprod1p 11781 strressid 12774 restopnb 14501 metrest 14826 qtopbasss 14841 |
| Copyright terms: Public domain | W3C validator |