| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| Ref | Expression |
|---|---|
| ineq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq1 3375 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: diftpsn3 3785 disji2 4051 ordpwsucexmid 4636 riinint 4958 fnresdisj 5405 fnimadisj 5416 ecinxp 6720 fiintim 7054 fival 7098 fzval2 10168 fvinim0ffz 10407 fsum1p 11844 fprod1p 12025 strressid 13018 restopnb 14768 metrest 15093 qtopbasss 15108 |
| Copyright terms: Public domain | W3C validator |