Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ineq1d | Unicode version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
ineq1d.1 |
Ref | Expression |
---|---|
ineq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 | |
2 | ineq1 3321 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: diftpsn3 3721 disji2 3982 ordpwsucexmid 4554 riinint 4872 fnresdisj 5308 fnimadisj 5318 ecinxp 6588 fiintim 6906 fival 6947 fzval2 9968 fvinim0ffz 10197 fsum1p 11381 fprod1p 11562 restopnb 12975 metrest 13300 qtopbasss 13315 |
Copyright terms: Public domain | W3C validator |