| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq1d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| Ref | Expression |
|---|---|
| ineq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq1 3367 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: diftpsn3 3774 disji2 4037 ordpwsucexmid 4618 riinint 4939 fnresdisj 5386 fnimadisj 5396 ecinxp 6697 fiintim 7028 fival 7072 fzval2 10133 fvinim0ffz 10370 fsum1p 11729 fprod1p 11910 strressid 12903 restopnb 14653 metrest 14978 qtopbasss 14993 |
| Copyright terms: Public domain | W3C validator |