ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1d Unicode version

Theorem ineq1d 3337
Description: Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
ineq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ineq1d  |-  ( ph  ->  ( A  i^i  C
)  =  ( B  i^i  C ) )

Proof of Theorem ineq1d
StepHypRef Expression
1 ineq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ineq1 3331 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  i^i  C
)  =  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137
This theorem is referenced by:  diftpsn3  3735  disji2  3998  ordpwsucexmid  4571  riinint  4890  fnresdisj  5328  fnimadisj  5338  ecinxp  6613  fiintim  6931  fival  6972  fzval2  10014  fvinim0ffz  10244  fsum1p  11429  fprod1p  11610  strressid  12533  restopnb  13842  metrest  14167  qtopbasss  14182
  Copyright terms: Public domain W3C validator