ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimadisj GIF version

Theorem fnimadisj 5338
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fnimadisj ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)

Proof of Theorem fnimadisj
StepHypRef Expression
1 fndm 5317 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
21ineq1d 3337 . . . 4 (𝐹 Fn 𝐴 → (dom 𝐹𝐶) = (𝐴𝐶))
32eqeq1d 2186 . . 3 (𝐹 Fn 𝐴 → ((dom 𝐹𝐶) = ∅ ↔ (𝐴𝐶) = ∅))
43biimpar 297 . 2 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
5 imadisj 4992 . 2 ((𝐹𝐶) = ∅ ↔ (dom 𝐹𝐶) = ∅)
64, 5sylibr 134 1 ((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  cin 3130  c0 3424  dom cdm 4628  cima 4631   Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fn 5221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator