![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnimadisj | GIF version |
Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
fnimadisj | ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5317 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | ineq1d 3337 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (dom 𝐹 ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
3 | 2 | eqeq1d 2186 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((dom 𝐹 ∩ 𝐶) = ∅ ↔ (𝐴 ∩ 𝐶) = ∅)) |
4 | 3 | biimpar 297 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (dom 𝐹 ∩ 𝐶) = ∅) |
5 | imadisj 4992 | . 2 ⊢ ((𝐹 “ 𝐶) = ∅ ↔ (dom 𝐹 ∩ 𝐶) = ∅) | |
6 | 4, 5 | sylibr 134 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 “ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∩ cin 3130 ∅c0 3424 dom cdm 4628 “ cima 4631 Fn wfn 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-fn 5221 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |