ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm Unicode version

Theorem fnresdm 5385
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5372 . 2  |-  ( F  Fn  A  ->  Rel  F )
2 fndm 5373 . . 3  |-  ( F  Fn  A  ->  dom  F  =  A )
3 eqimss 3247 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
42, 3syl 14 . 2  |-  ( F  Fn  A  ->  dom  F 
C_  A )
5 relssres 4997 . 2  |-  ( ( Rel  F  /\  dom  F 
C_  A )  -> 
( F  |`  A )  =  F )
61, 4, 5syl2anc 411 1  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166   dom cdm 4675    |` cres 4677   Rel wrel 4680    Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-dm 4685  df-res 4687  df-fun 5273  df-fn 5274
This theorem is referenced by:  fnima  5394  fresin  5454  resasplitss  5455  fnsnsplitss  5783  fsnunfv  5785  fsnunres  5786  fnsnsplitdc  6591  fnfi  7038  fseq1p1m1  10216  facnn  10872  fac0  10873  rnrhmsubrg  14014  cnfldms  15008  dfrelog  15332  domomsubct  15938
  Copyright terms: Public domain W3C validator