ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm Unicode version

Theorem fnresdm 5432
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5419 . 2  |-  ( F  Fn  A  ->  Rel  F )
2 fndm 5420 . . 3  |-  ( F  Fn  A  ->  dom  F  =  A )
3 eqimss 3278 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
42, 3syl 14 . 2  |-  ( F  Fn  A  ->  dom  F 
C_  A )
5 relssres 5043 . 2  |-  ( ( Rel  F  /\  dom  F 
C_  A )  -> 
( F  |`  A )  =  F )
61, 4, 5syl2anc 411 1  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197   dom cdm 4719    |` cres 4721   Rel wrel 4724    Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729  df-res 4731  df-fun 5320  df-fn 5321
This theorem is referenced by:  fnima  5442  fresin  5504  resasplitss  5505  fnsnsplitss  5838  fsnunfv  5840  fsnunres  5841  fnsnsplitdc  6651  fnfi  7103  fseq1p1m1  10290  facnn  10949  fac0  10950  rnrhmsubrg  14216  cnfldms  15210  dfrelog  15534  domomsubct  16367
  Copyright terms: Public domain W3C validator