ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm Unicode version

Theorem fnresdm 5340
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5329 . 2  |-  ( F  Fn  A  ->  Rel  F )
2 fndm 5330 . . 3  |-  ( F  Fn  A  ->  dom  F  =  A )
3 eqimss 3224 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
42, 3syl 14 . 2  |-  ( F  Fn  A  ->  dom  F 
C_  A )
5 relssres 4960 . 2  |-  ( ( Rel  F  /\  dom  F 
C_  A )  -> 
( F  |`  A )  =  F )
61, 4, 5syl2anc 411 1  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3144   dom cdm 4641    |` cres 4643   Rel wrel 4646    Fn wfn 5226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648  df-dm 4651  df-res 4653  df-fun 5233  df-fn 5234
This theorem is referenced by:  fnima  5349  fresin  5409  resasplitss  5410  fnsnsplitss  5731  fsnunfv  5733  fsnunres  5734  fnsnsplitdc  6524  fnfi  6954  fseq1p1m1  10112  facnn  10725  fac0  10726  dfrelog  14665
  Copyright terms: Public domain W3C validator