ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm Unicode version

Theorem fnresdm 5386
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5373 . 2  |-  ( F  Fn  A  ->  Rel  F )
2 fndm 5374 . . 3  |-  ( F  Fn  A  ->  dom  F  =  A )
3 eqimss 3247 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
42, 3syl 14 . 2  |-  ( F  Fn  A  ->  dom  F 
C_  A )
5 relssres 4998 . 2  |-  ( ( Rel  F  /\  dom  F 
C_  A )  -> 
( F  |`  A )  =  F )
61, 4, 5syl2anc 411 1  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166   dom cdm 4676    |` cres 4678   Rel wrel 4681    Fn wfn 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-dm 4686  df-res 4688  df-fun 5274  df-fn 5275
This theorem is referenced by:  fnima  5396  fresin  5456  resasplitss  5457  fnsnsplitss  5785  fsnunfv  5787  fsnunres  5788  fnsnsplitdc  6593  fnfi  7040  fseq1p1m1  10218  facnn  10874  fac0  10875  rnrhmsubrg  14047  cnfldms  15041  dfrelog  15365  domomsubct  15975
  Copyright terms: Public domain W3C validator