ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresdm Unicode version

Theorem fnresdm 5404
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.)
Assertion
Ref Expression
fnresdm  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )

Proof of Theorem fnresdm
StepHypRef Expression
1 fnrel 5391 . 2  |-  ( F  Fn  A  ->  Rel  F )
2 fndm 5392 . . 3  |-  ( F  Fn  A  ->  dom  F  =  A )
3 eqimss 3255 . . 3  |-  ( dom 
F  =  A  ->  dom  F  C_  A )
42, 3syl 14 . 2  |-  ( F  Fn  A  ->  dom  F 
C_  A )
5 relssres 5016 . 2  |-  ( ( Rel  F  /\  dom  F 
C_  A )  -> 
( F  |`  A )  =  F )
61, 4, 5syl2anc 411 1  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3174   dom cdm 4693    |` cres 4695   Rel wrel 4698    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-res 4705  df-fun 5292  df-fn 5293
This theorem is referenced by:  fnima  5414  fresin  5476  resasplitss  5477  fnsnsplitss  5806  fsnunfv  5808  fsnunres  5809  fnsnsplitdc  6614  fnfi  7064  fseq1p1m1  10251  facnn  10909  fac0  10910  rnrhmsubrg  14129  cnfldms  15123  dfrelog  15447  domomsubct  16140
  Copyright terms: Public domain W3C validator