ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnexALT Unicode version

Theorem fnexALT 5942
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5143. This version of fnex 5574 uses ax-pow 4038 and ax-un 4293, whereas fnex 5574 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5157 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 relssdmrn 4995 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . . 3  |-  ( F  Fn  A  ->  F  C_  ( dom  F  X.  ran  F ) )
43adantr 272 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  C_  ( dom  F  X.  ran  F ) )
5 fndm 5158 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
65eleq1d 2168 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  e.  B  <->  A  e.  B ) )
76biimpar 293 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  dom  F  e.  B
)
8 fnfun 5156 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
9 funimaexg 5143 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
108, 9sylan 279 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
11 imadmrn 4827 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
125imaeq2d 4817 . . . . . . 7  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
1311, 12syl5eqr 2146 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
1413eleq1d 2168 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  e.  _V  <->  ( F " A )  e.  _V ) )
1514biimpar 293 . . . 4  |-  ( ( F  Fn  A  /\  ( F " A )  e.  _V )  ->  ran  F  e.  _V )
1610, 15syldan 278 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ran  F  e.  _V )
17 xpexg 4591 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  _V )  ->  ( dom  F  X.  ran  F )  e. 
_V )
187, 16, 17syl2anc 406 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( dom  F  X.  ran  F )  e.  _V )
19 ssexg 4007 . 2  |-  ( ( F  C_  ( dom  F  X.  ran  F )  /\  ( dom  F  X.  ran  F )  e. 
_V )  ->  F  e.  _V )
204, 18, 19syl2anc 406 1  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1448   _Vcvv 2641    C_ wss 3021    X. cxp 4475   dom cdm 4477   ran crn 4478   "cima 4480   Rel wrel 4482   Fun wfun 5053    Fn wfn 5054
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-fun 5061  df-fn 5062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator