| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnexALT | Unicode version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5405. This version of fnex 5861 uses ax-pow 4258 and ax-un 4524, whereas fnex 5861 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fnexALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5419 |
. . . 4
| |
| 2 | relssdmrn 5249 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | fndm 5420 |
. . . . 5
| |
| 6 | 5 | eleq1d 2298 |
. . . 4
|
| 7 | 6 | biimpar 297 |
. . 3
|
| 8 | fnfun 5418 |
. . . . 5
| |
| 9 | funimaexg 5405 |
. . . . 5
| |
| 10 | 8, 9 | sylan 283 |
. . . 4
|
| 11 | imadmrn 5078 |
. . . . . . 7
| |
| 12 | 5 | imaeq2d 5068 |
. . . . . . 7
|
| 13 | 11, 12 | eqtr3id 2276 |
. . . . . 6
|
| 14 | 13 | eleq1d 2298 |
. . . . 5
|
| 15 | 14 | biimpar 297 |
. . . 4
|
| 16 | 10, 15 | syldan 282 |
. . 3
|
| 17 | xpexg 4833 |
. . 3
| |
| 18 | 7, 16, 17 | syl2anc 411 |
. 2
|
| 19 | ssexg 4223 |
. 2
| |
| 20 | 4, 18, 19 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |