Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnexALT | Unicode version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5280. This version of fnex 5716 uses ax-pow 4158 and ax-un 4416, whereas fnex 5716 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
fnexALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5294 | . . . 4 | |
2 | relssdmrn 5129 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | 3 | adantr 274 | . 2 |
5 | fndm 5295 | . . . . 5 | |
6 | 5 | eleq1d 2239 | . . . 4 |
7 | 6 | biimpar 295 | . . 3 |
8 | fnfun 5293 | . . . . 5 | |
9 | funimaexg 5280 | . . . . 5 | |
10 | 8, 9 | sylan 281 | . . . 4 |
11 | imadmrn 4961 | . . . . . . 7 | |
12 | 5 | imaeq2d 4951 | . . . . . . 7 |
13 | 11, 12 | eqtr3id 2217 | . . . . . 6 |
14 | 13 | eleq1d 2239 | . . . . 5 |
15 | 14 | biimpar 295 | . . . 4 |
16 | 10, 15 | syldan 280 | . . 3 |
17 | xpexg 4723 | . . 3 | |
18 | 7, 16, 17 | syl2anc 409 | . 2 |
19 | ssexg 4126 | . 2 | |
20 | 4, 18, 19 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 wss 3121 cxp 4607 cdm 4609 crn 4610 cima 4612 wrel 4614 wfun 5190 wfn 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-fun 5198 df-fn 5199 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |