| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnexALT | Unicode version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5358. This version of fnex 5806 uses ax-pow 4218 and ax-un 4480, whereas fnex 5806 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| fnexALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5372 |
. . . 4
| |
| 2 | relssdmrn 5203 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | adantr 276 |
. 2
|
| 5 | fndm 5373 |
. . . . 5
| |
| 6 | 5 | eleq1d 2274 |
. . . 4
|
| 7 | 6 | biimpar 297 |
. . 3
|
| 8 | fnfun 5371 |
. . . . 5
| |
| 9 | funimaexg 5358 |
. . . . 5
| |
| 10 | 8, 9 | sylan 283 |
. . . 4
|
| 11 | imadmrn 5032 |
. . . . . . 7
| |
| 12 | 5 | imaeq2d 5022 |
. . . . . . 7
|
| 13 | 11, 12 | eqtr3id 2252 |
. . . . . 6
|
| 14 | 13 | eleq1d 2274 |
. . . . 5
|
| 15 | 14 | biimpar 297 |
. . . 4
|
| 16 | 10, 15 | syldan 282 |
. . 3
|
| 17 | xpexg 4789 |
. . 3
| |
| 18 | 7, 16, 17 | syl2anc 411 |
. 2
|
| 19 | ssexg 4183 |
. 2
| |
| 20 | 4, 18, 19 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |