ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnexALT Unicode version

Theorem fnexALT 6088
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5280. This version of fnex 5716 uses ax-pow 4158 and ax-un 4416, whereas fnex 5716 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5294 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 relssdmrn 5129 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . . 3  |-  ( F  Fn  A  ->  F  C_  ( dom  F  X.  ran  F ) )
43adantr 274 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  C_  ( dom  F  X.  ran  F ) )
5 fndm 5295 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
65eleq1d 2239 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  e.  B  <->  A  e.  B ) )
76biimpar 295 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  dom  F  e.  B
)
8 fnfun 5293 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
9 funimaexg 5280 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
108, 9sylan 281 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
11 imadmrn 4961 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
125imaeq2d 4951 . . . . . . 7  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
1311, 12eqtr3id 2217 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
1413eleq1d 2239 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  e.  _V  <->  ( F " A )  e.  _V ) )
1514biimpar 295 . . . 4  |-  ( ( F  Fn  A  /\  ( F " A )  e.  _V )  ->  ran  F  e.  _V )
1610, 15syldan 280 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ran  F  e.  _V )
17 xpexg 4723 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  _V )  ->  ( dom  F  X.  ran  F )  e. 
_V )
187, 16, 17syl2anc 409 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( dom  F  X.  ran  F )  e.  _V )
19 ssexg 4126 . 2  |-  ( ( F  C_  ( dom  F  X.  ran  F )  /\  ( dom  F  X.  ran  F )  e. 
_V )  ->  F  e.  _V )
204, 18, 19syl2anc 409 1  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   _Vcvv 2730    C_ wss 3121    X. cxp 4607   dom cdm 4609   ran crn 4610   "cima 4612   Rel wrel 4614   Fun wfun 5190    Fn wfn 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-fun 5198  df-fn 5199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator