ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basmex Unicode version

Theorem basmex 12680
Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.)
Hypothesis
Ref Expression
basmex.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
basmex  |-  ( A  e.  B  ->  G  e.  _V )

Proof of Theorem basmex
StepHypRef Expression
1 basfn 12679 . . . 4  |-  Base  Fn  _V
2 fnrel 5353 . . . 4  |-  ( Base 
Fn  _V  ->  Rel  Base )
31, 2ax-mp 5 . . 3  |-  Rel  Base
4 basmex.b . . . . 5  |-  B  =  ( Base `  G
)
54eleq2i 2260 . . . 4  |-  ( A  e.  B  <->  A  e.  ( Base `  G )
)
65biimpi 120 . . 3  |-  ( A  e.  B  ->  A  e.  ( Base `  G
) )
7 relelfvdm 5587 . . 3  |-  ( ( Rel  Base  /\  A  e.  ( Base `  G
) )  ->  G  e.  dom  Base )
83, 6, 7sylancr 414 . 2  |-  ( A  e.  B  ->  G  e.  dom  Base )
98elexd 2773 1  |-  ( A  e.  B  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   dom cdm 4660   Rel wrel 4665    Fn wfn 5250   ` cfv 5255   Basecbs 12621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627
This theorem is referenced by:  basm  12682  ismgmid  12963  ismnd  13003  dfgrp2e  13103  grpinvval  13118  grplactfval  13176  mulgval  13195  mulgnngsum  13200  mulgnn0gsum  13201  mulg1  13202  mulgnnp1  13203  rrgval  13761  islssm  13856  islidlm  13978
  Copyright terms: Public domain W3C validator