| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnex | Unicode version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5807. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5373 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | df-fn 5275 |
. . 3
| |
| 4 | eleq1a 2277 |
. . . . . 6
| |
| 5 | 4 | impcom 125 |
. . . . 5
|
| 6 | resfunexg 5807 |
. . . . 5
| |
| 7 | 5, 6 | sylan2 286 |
. . . 4
|
| 8 | 7 | anassrs 400 |
. . 3
|
| 9 | 3, 8 | sylanb 284 |
. 2
|
| 10 | resdm 4999 |
. . . 4
| |
| 11 | 10 | eleq1d 2274 |
. . 3
|
| 12 | 11 | biimpa 296 |
. 2
|
| 13 | 2, 9, 12 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 |
| This theorem is referenced by: funex 5809 fex 5815 offval 6168 ofrfval 6169 uchoice 6225 tfrlemibex 6417 tfr1onlembex 6433 fndmeng 6904 cc2lem 7380 frecfzennn 10573 prdsbas2 13144 prdsplusgval 13148 prdsplusgfval 13149 prdsmulrval 13150 prdsmulrfval 13151 xpscf 13212 mulgval 13491 mulgfng 13493 invrfvald 13917 |
| Copyright terms: Public domain | W3C validator |