Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnex | Unicode version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5717. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5296 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | df-fn 5201 | . . 3 | |
4 | eleq1a 2242 | . . . . . 6 | |
5 | 4 | impcom 124 | . . . . 5 |
6 | resfunexg 5717 | . . . . 5 | |
7 | 5, 6 | sylan2 284 | . . . 4 |
8 | 7 | anassrs 398 | . . 3 |
9 | 3, 8 | sylanb 282 | . 2 |
10 | resdm 4930 | . . . 4 | |
11 | 10 | eleq1d 2239 | . . 3 |
12 | 11 | biimpa 294 | . 2 |
13 | 2, 9, 12 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cdm 4611 cres 4613 wrel 4616 wfun 5192 wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: funex 5719 fex 5725 offval 6068 ofrfval 6069 tfrlemibex 6308 tfr1onlembex 6324 fndmeng 6788 cc2lem 7228 frecfzennn 10382 |
Copyright terms: Public domain | W3C validator |