| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnex | Unicode version | ||
| Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5828. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5391 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | df-fn 5293 |
. . 3
| |
| 4 | eleq1a 2279 |
. . . . . 6
| |
| 5 | 4 | impcom 125 |
. . . . 5
|
| 6 | resfunexg 5828 |
. . . . 5
| |
| 7 | 5, 6 | sylan2 286 |
. . . 4
|
| 8 | 7 | anassrs 400 |
. . 3
|
| 9 | 3, 8 | sylanb 284 |
. 2
|
| 10 | resdm 5017 |
. . . 4
| |
| 11 | 10 | eleq1d 2276 |
. . 3
|
| 12 | 11 | biimpa 296 |
. 2
|
| 13 | 2, 9, 12 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: funex 5830 fex 5836 offval 6189 ofrfval 6190 uchoice 6246 tfrlemibex 6438 tfr1onlembex 6454 fndmeng 6926 cc2lem 7413 frecfzennn 10608 prdsbas2 13226 prdsplusgval 13230 prdsplusgfval 13231 prdsmulrval 13232 prdsmulrfval 13233 xpscf 13294 mulgval 13573 mulgfng 13575 invrfvald 13999 |
| Copyright terms: Public domain | W3C validator |