Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnex | Unicode version |
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5706. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5286 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | df-fn 5191 | . . 3 | |
4 | eleq1a 2238 | . . . . . 6 | |
5 | 4 | impcom 124 | . . . . 5 |
6 | resfunexg 5706 | . . . . 5 | |
7 | 5, 6 | sylan2 284 | . . . 4 |
8 | 7 | anassrs 398 | . . 3 |
9 | 3, 8 | sylanb 282 | . 2 |
10 | resdm 4923 | . . . 4 | |
11 | 10 | eleq1d 2235 | . . 3 |
12 | 11 | biimpa 294 | . 2 |
13 | 2, 9, 12 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 cdm 4604 cres 4606 wrel 4609 wfun 5182 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: funex 5708 fex 5714 offval 6057 ofrfval 6058 tfrlemibex 6297 tfr1onlembex 6313 fndmeng 6776 cc2lem 7207 frecfzennn 10361 |
Copyright terms: Public domain | W3C validator |