ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnex Unicode version

Theorem fnex 5829
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5828. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fnex  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )

Proof of Theorem fnex
StepHypRef Expression
1 fnrel 5391 . . 3  |-  ( F  Fn  A  ->  Rel  F )
21adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  Rel  F )
3 df-fn 5293 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
4 eleq1a 2279 . . . . . 6  |-  ( A  e.  B  ->  ( dom  F  =  A  ->  dom  F  e.  B ) )
54impcom 125 . . . . 5  |-  ( ( dom  F  =  A  /\  A  e.  B
)  ->  dom  F  e.  B )
6 resfunexg 5828 . . . . 5  |-  ( ( Fun  F  /\  dom  F  e.  B )  -> 
( F  |`  dom  F
)  e.  _V )
75, 6sylan2 286 . . . 4  |-  ( ( Fun  F  /\  ( dom  F  =  A  /\  A  e.  B )
)  ->  ( F  |` 
dom  F )  e. 
_V )
87anassrs 400 . . 3  |-  ( ( ( Fun  F  /\  dom  F  =  A )  /\  A  e.  B
)  ->  ( F  |` 
dom  F )  e. 
_V )
93, 8sylanb 284 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( F  |`  dom  F
)  e.  _V )
10 resdm 5017 . . . 4  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
1110eleq1d 2276 . . 3  |-  ( Rel 
F  ->  ( ( F  |`  dom  F )  e.  _V  <->  F  e.  _V ) )
1211biimpa 296 . 2  |-  ( ( Rel  F  /\  ( F  |`  dom  F )  e.  _V )  ->  F  e.  _V )
132, 9, 12syl2anc 411 1  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   dom cdm 4693    |` cres 4695   Rel wrel 4698   Fun wfun 5284    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by:  funex  5830  fex  5836  offval  6189  ofrfval  6190  uchoice  6246  tfrlemibex  6438  tfr1onlembex  6454  fndmeng  6926  cc2lem  7413  frecfzennn  10608  prdsbas2  13226  prdsplusgval  13230  prdsplusgfval  13231  prdsmulrval  13232  prdsmulrfval  13233  xpscf  13294  mulgval  13573  mulgfng  13575  invrfvald  13999
  Copyright terms: Public domain W3C validator