ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basmexd Unicode version

Theorem basmexd 12475
Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.)
Hypotheses
Ref Expression
basmexd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
basmexd.m  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
basmexd  |-  ( ph  ->  G  e.  _V )

Proof of Theorem basmexd
StepHypRef Expression
1 basfn 12473 . . . 4  |-  Base  Fn  _V
2 fnrel 5296 . . . 4  |-  ( Base 
Fn  _V  ->  Rel  Base )
31, 2ax-mp 5 . . 3  |-  Rel  Base
4 basmexd.m . . . 4  |-  ( ph  ->  A  e.  B )
5 basmexd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  G ) )
64, 5eleqtrd 2249 . . 3  |-  ( ph  ->  A  e.  ( Base `  G ) )
7 relelfvdm 5528 . . 3  |-  ( ( Rel  Base  /\  A  e.  ( Base `  G
) )  ->  G  e.  dom  Base )
83, 6, 7sylancr 412 . 2  |-  ( ph  ->  G  e.  dom  Base )
98elexd 2743 1  |-  ( ph  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730   dom cdm 4611   Rel wrel 4616    Fn wfn 5193   ` cfv 5198   Basecbs 12416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422
This theorem is referenced by:  grppropd  12724  grpsubval  12749
  Copyright terms: Public domain W3C validator