ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basmexd Unicode version

Theorem basmexd 12524
Description: A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.)
Hypotheses
Ref Expression
basmexd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
basmexd.m  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
basmexd  |-  ( ph  ->  G  e.  _V )

Proof of Theorem basmexd
StepHypRef Expression
1 basfn 12522 . . . 4  |-  Base  Fn  _V
2 fnrel 5316 . . . 4  |-  ( Base 
Fn  _V  ->  Rel  Base )
31, 2ax-mp 5 . . 3  |-  Rel  Base
4 basmexd.m . . . 4  |-  ( ph  ->  A  e.  B )
5 basmexd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  G ) )
64, 5eleqtrd 2256 . . 3  |-  ( ph  ->  A  e.  ( Base `  G ) )
7 relelfvdm 5549 . . 3  |-  ( ( Rel  Base  /\  A  e.  ( Base `  G
) )  ->  G  e.  dom  Base )
83, 6, 7sylancr 414 . 2  |-  ( ph  ->  G  e.  dom  Base )
98elexd 2752 1  |-  ( ph  ->  G  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739   dom cdm 4628   Rel wrel 4633    Fn wfn 5213   ` cfv 5218   Basecbs 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470
This theorem is referenced by:  grppropd  12898  grpsubval  12924  grpsubpropd2  12980
  Copyright terms: Public domain W3C validator