ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmn0 Unicode version

Theorem ismgmn0 13305
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
ismgmn0.b  |-  B  =  ( Base `  M
)
ismgmn0.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgmn0  |-  ( A  e.  B  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y   
x, M, y    x,  .o. , y
Allowed substitution hints:    A( x, y)

Proof of Theorem ismgmn0
StepHypRef Expression
1 basfn 13005 . . . . . 6  |-  Base  Fn  _V
2 fnrel 5391 . . . . . 6  |-  ( Base 
Fn  _V  ->  Rel  Base )
31, 2ax-mp 5 . . . . 5  |-  Rel  Base
4 relelfvdm 5631 . . . . 5  |-  ( ( Rel  Base  /\  A  e.  ( Base `  M
) )  ->  M  e.  dom  Base )
53, 4mpan 424 . . . 4  |-  ( A  e.  ( Base `  M
)  ->  M  e.  dom  Base )
6 ismgmn0.b . . . 4  |-  B  =  ( Base `  M
)
75, 6eleq2s 2302 . . 3  |-  ( A  e.  B  ->  M  e.  dom  Base )
87elexd 2790 . 2  |-  ( A  e.  B  ->  M  e.  _V )
9 ismgmn0.o . . 3  |-  .o.  =  ( +g  `  M )
106, 9ismgm 13304 . 2  |-  ( M  e.  _V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
118, 10syl 14 1  |-  ( A  e.  B  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   dom cdm 4693   Rel wrel 4698    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Mgmcmgm 13301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303
This theorem is referenced by:  mgm1  13317  opifismgmdc  13318  issgrpn0  13352
  Copyright terms: Public domain W3C validator