ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmn0 Unicode version

Theorem ismgmn0 13391
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
ismgmn0.b  |-  B  =  ( Base `  M
)
ismgmn0.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgmn0  |-  ( A  e.  B  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y   
x, M, y    x,  .o. , y
Allowed substitution hints:    A( x, y)

Proof of Theorem ismgmn0
StepHypRef Expression
1 basfn 13091 . . . . . 6  |-  Base  Fn  _V
2 fnrel 5419 . . . . . 6  |-  ( Base 
Fn  _V  ->  Rel  Base )
31, 2ax-mp 5 . . . . 5  |-  Rel  Base
4 relelfvdm 5659 . . . . 5  |-  ( ( Rel  Base  /\  A  e.  ( Base `  M
) )  ->  M  e.  dom  Base )
53, 4mpan 424 . . . 4  |-  ( A  e.  ( Base `  M
)  ->  M  e.  dom  Base )
6 ismgmn0.b . . . 4  |-  B  =  ( Base `  M
)
75, 6eleq2s 2324 . . 3  |-  ( A  e.  B  ->  M  e.  dom  Base )
87elexd 2813 . 2  |-  ( A  e.  B  ->  M  e.  _V )
9 ismgmn0.o . . 3  |-  .o.  =  ( +g  `  M )
106, 9ismgm 13390 . 2  |-  ( M  e.  _V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
118, 10syl 14 1  |-  ( A  e.  B  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   dom cdm 4719   Rel wrel 4724    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Mgmcmgm 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389
This theorem is referenced by:  mgm1  13403  opifismgmdc  13404  issgrpn0  13438
  Copyright terms: Public domain W3C validator