ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5im Unicode version

Theorem dffn5im 5609
Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5297 and dmmptss 5167. (Contributed by Jim Kingdon, 31-Dec-2018.)
Assertion
Ref Expression
dffn5im  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem dffn5im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrel 5357 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel4v 5122 . . . 4  |-  ( Rel 
F  <->  F  =  { <. x ,  y >.  |  x F y } )
31, 2sylib 122 . . 3  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  x F
y } )
4 fnbr 5363 . . . . . . 7  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
54ex 115 . . . . . 6  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
65pm4.71rd 394 . . . . 5  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  x F y ) ) )
7 eqcom 2198 . . . . . . 7  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
8 fnbrfvb 5604 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
97, 8bitrid 192 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
109pm5.32da 452 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  y  =  ( F `  x )
)  <->  ( x  e.  A  /\  x F y ) ) )
116, 10bitr4d 191 . . . 4  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  y  =  ( F `  x ) ) ) )
1211opabbidv 4100 . . 3  |-  ( F  Fn  A  ->  { <. x ,  y >.  |  x F y }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
133, 12eqtrd 2229 . 2  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
14 df-mpt 4097 . 2  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
1513, 14eqtr4di 2247 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   {copab 4094    |-> cmpt 4095   Rel wrel 4669    Fn wfn 5254   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267
This theorem is referenced by:  fnrnfv  5610  feqmptd  5617  dffn5imf  5619  eqfnfv  5662  fndmin  5672  fcompt  5735  resfunexg  5786  eufnfv  5796  fnovim  6035  offveqb  6159  caofinvl  6165  oprabco  6284  df1st2  6286  df2nd2  6287  pw2f1odclem  6904  xpen  6915  prdsbascl  12991  prdsidlem  13149  pws0g  13153  prdsinvlem  13310  cnmpt1st  14608  cnmpt2nd  14609
  Copyright terms: Public domain W3C validator