ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5im Unicode version

Theorem dffn5im 5606
Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5296 and dmmptss 5166. (Contributed by Jim Kingdon, 31-Dec-2018.)
Assertion
Ref Expression
dffn5im  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem dffn5im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrel 5356 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel4v 5121 . . . 4  |-  ( Rel 
F  <->  F  =  { <. x ,  y >.  |  x F y } )
31, 2sylib 122 . . 3  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  x F
y } )
4 fnbr 5360 . . . . . . 7  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
54ex 115 . . . . . 6  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
65pm4.71rd 394 . . . . 5  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  x F y ) ) )
7 eqcom 2198 . . . . . . 7  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
8 fnbrfvb 5601 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
97, 8bitrid 192 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
109pm5.32da 452 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  y  =  ( F `  x )
)  <->  ( x  e.  A  /\  x F y ) ) )
116, 10bitr4d 191 . . . 4  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  y  =  ( F `  x ) ) ) )
1211opabbidv 4099 . . 3  |-  ( F  Fn  A  ->  { <. x ,  y >.  |  x F y }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
133, 12eqtrd 2229 . 2  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
14 df-mpt 4096 . 2  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
1513, 14eqtr4di 2247 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033   {copab 4093    |-> cmpt 4094   Rel wrel 4668    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  fnrnfv  5607  feqmptd  5614  dffn5imf  5616  eqfnfv  5659  fndmin  5669  fcompt  5732  resfunexg  5783  eufnfv  5793  fnovim  6031  offveqb  6155  caofinvl  6160  oprabco  6275  df1st2  6277  df2nd2  6278  pw2f1odclem  6895  xpen  6906  cnmpt1st  14524  cnmpt2nd  14525
  Copyright terms: Public domain W3C validator