| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn5im | Unicode version | ||
| Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5356 and dmmptss 5225. (Contributed by Jim Kingdon, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffn5im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5419 |
. . . 4
| |
| 2 | dfrel4v 5180 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | fnbr 5425 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 5 | pm4.71rd 394 |
. . . . 5
|
| 7 | eqcom 2231 |
. . . . . . 7
| |
| 8 | fnbrfvb 5672 |
. . . . . . 7
| |
| 9 | 7, 8 | bitrid 192 |
. . . . . 6
|
| 10 | 9 | pm5.32da 452 |
. . . . 5
|
| 11 | 6, 10 | bitr4d 191 |
. . . 4
|
| 12 | 11 | opabbidv 4150 |
. . 3
|
| 13 | 3, 12 | eqtrd 2262 |
. 2
|
| 14 | df-mpt 4147 |
. 2
| |
| 15 | 13, 14 | eqtr4di 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: fnrnfv 5680 feqmptd 5687 dffn5imf 5689 eqfnfv 5732 fndmin 5742 fcompt 5805 funiun 5816 resfunexg 5860 eufnfv 5870 fnovim 6113 offveqb 6238 caofinvl 6244 oprabco 6363 df1st2 6365 df2nd2 6366 pw2f1odclem 6995 xpen 7006 prdsbascl 13322 prdsidlem 13480 pws0g 13484 prdsinvlem 13641 cnmpt1st 14962 cnmpt2nd 14963 |
| Copyright terms: Public domain | W3C validator |