| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn5im | Unicode version | ||
| Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5328 and dmmptss 5198. (Contributed by Jim Kingdon, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffn5im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5391 |
. . . 4
| |
| 2 | dfrel4v 5153 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | fnbr 5397 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 5 | pm4.71rd 394 |
. . . . 5
|
| 7 | eqcom 2209 |
. . . . . . 7
| |
| 8 | fnbrfvb 5642 |
. . . . . . 7
| |
| 9 | 7, 8 | bitrid 192 |
. . . . . 6
|
| 10 | 9 | pm5.32da 452 |
. . . . 5
|
| 11 | 6, 10 | bitr4d 191 |
. . . 4
|
| 12 | 11 | opabbidv 4126 |
. . 3
|
| 13 | 3, 12 | eqtrd 2240 |
. 2
|
| 14 | df-mpt 4123 |
. 2
| |
| 15 | 13, 14 | eqtr4di 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: fnrnfv 5648 feqmptd 5655 dffn5imf 5657 eqfnfv 5700 fndmin 5710 fcompt 5773 funiun 5784 resfunexg 5828 eufnfv 5838 fnovim 6077 offveqb 6201 caofinvl 6207 oprabco 6326 df1st2 6328 df2nd2 6329 pw2f1odclem 6956 xpen 6967 prdsbascl 13236 prdsidlem 13394 pws0g 13398 prdsinvlem 13555 cnmpt1st 14875 cnmpt2nd 14876 |
| Copyright terms: Public domain | W3C validator |