ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5im Unicode version

Theorem dffn5im 5532
Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5226 and dmmptss 5100. (Contributed by Jim Kingdon, 31-Dec-2018.)
Assertion
Ref Expression
dffn5im  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem dffn5im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrel 5286 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel4v 5055 . . . 4  |-  ( Rel 
F  <->  F  =  { <. x ,  y >.  |  x F y } )
31, 2sylib 121 . . 3  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  x F
y } )
4 fnbr 5290 . . . . . . 7  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
54ex 114 . . . . . 6  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
65pm4.71rd 392 . . . . 5  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  x F y ) ) )
7 eqcom 2167 . . . . . . 7  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
8 fnbrfvb 5527 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
97, 8syl5bb 191 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
109pm5.32da 448 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  y  =  ( F `  x )
)  <->  ( x  e.  A  /\  x F y ) ) )
116, 10bitr4d 190 . . . 4  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  y  =  ( F `  x ) ) ) )
1211opabbidv 4048 . . 3  |-  ( F  Fn  A  ->  { <. x ,  y >.  |  x F y }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
133, 12eqtrd 2198 . 2  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
14 df-mpt 4045 . 2  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
1513, 14eqtr4di 2217 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982   {copab 4042    |-> cmpt 4043   Rel wrel 4609    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  fnrnfv  5533  feqmptd  5539  dffn5imf  5541  eqfnfv  5583  fndmin  5592  fcompt  5655  resfunexg  5706  eufnfv  5715  fnovim  5950  offveqb  6069  caofinvl  6072  oprabco  6185  df1st2  6187  df2nd2  6188  xpen  6811  cnmpt1st  12928  cnmpt2nd  12929
  Copyright terms: Public domain W3C validator