| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn5im | Unicode version | ||
| Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5310 and dmmptss 5180. (Contributed by Jim Kingdon, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffn5im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5373 |
. . . 4
| |
| 2 | dfrel4v 5135 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | fnbr 5379 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 5 | pm4.71rd 394 |
. . . . 5
|
| 7 | eqcom 2207 |
. . . . . . 7
| |
| 8 | fnbrfvb 5621 |
. . . . . . 7
| |
| 9 | 7, 8 | bitrid 192 |
. . . . . 6
|
| 10 | 9 | pm5.32da 452 |
. . . . 5
|
| 11 | 6, 10 | bitr4d 191 |
. . . 4
|
| 12 | 11 | opabbidv 4111 |
. . 3
|
| 13 | 3, 12 | eqtrd 2238 |
. 2
|
| 14 | df-mpt 4108 |
. 2
| |
| 15 | 13, 14 | eqtr4di 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: fnrnfv 5627 feqmptd 5634 dffn5imf 5636 eqfnfv 5679 fndmin 5689 fcompt 5752 funiun 5763 resfunexg 5807 eufnfv 5817 fnovim 6056 offveqb 6180 caofinvl 6186 oprabco 6305 df1st2 6307 df2nd2 6308 pw2f1odclem 6933 xpen 6944 prdsbascl 13154 prdsidlem 13312 pws0g 13316 prdsinvlem 13473 cnmpt1st 14793 cnmpt2nd 14794 |
| Copyright terms: Public domain | W3C validator |