| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffn5im | Unicode version | ||
| Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5309 and dmmptss 5179. (Contributed by Jim Kingdon, 31-Dec-2018.) |
| Ref | Expression |
|---|---|
| dffn5im |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 5372 |
. . . 4
| |
| 2 | dfrel4v 5134 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | fnbr 5378 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 5 | pm4.71rd 394 |
. . . . 5
|
| 7 | eqcom 2207 |
. . . . . . 7
| |
| 8 | fnbrfvb 5619 |
. . . . . . 7
| |
| 9 | 7, 8 | bitrid 192 |
. . . . . 6
|
| 10 | 9 | pm5.32da 452 |
. . . . 5
|
| 11 | 6, 10 | bitr4d 191 |
. . . 4
|
| 12 | 11 | opabbidv 4110 |
. . 3
|
| 13 | 3, 12 | eqtrd 2238 |
. 2
|
| 14 | df-mpt 4107 |
. 2
| |
| 15 | 13, 14 | eqtr4di 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: fnrnfv 5625 feqmptd 5632 dffn5imf 5634 eqfnfv 5677 fndmin 5687 fcompt 5750 funiun 5761 resfunexg 5805 eufnfv 5815 fnovim 6054 offveqb 6178 caofinvl 6184 oprabco 6303 df1st2 6305 df2nd2 6306 pw2f1odclem 6931 xpen 6942 prdsbascl 13121 prdsidlem 13279 pws0g 13283 prdsinvlem 13440 cnmpt1st 14760 cnmpt2nd 14761 |
| Copyright terms: Public domain | W3C validator |