ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5im Unicode version

Theorem dffn5im 5385
Description: Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5086 and dmmptss 4961. (Contributed by Jim Kingdon, 31-Dec-2018.)
Assertion
Ref Expression
dffn5im  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem dffn5im
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fnrel 5146 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel4v 4916 . . . 4  |-  ( Rel 
F  <->  F  =  { <. x ,  y >.  |  x F y } )
31, 2sylib 121 . . 3  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  x F
y } )
4 fnbr 5150 . . . . . . 7  |-  ( ( F  Fn  A  /\  x F y )  ->  x  e.  A )
54ex 114 . . . . . 6  |-  ( F  Fn  A  ->  (
x F y  ->  x  e.  A )
)
65pm4.71rd 387 . . . . 5  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  x F y ) ) )
7 eqcom 2097 . . . . . . 7  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
8 fnbrfvb 5380 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
97, 8syl5bb 191 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
109pm5.32da 441 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  y  =  ( F `  x )
)  <->  ( x  e.  A  /\  x F y ) ) )
116, 10bitr4d 190 . . . 4  |-  ( F  Fn  A  ->  (
x F y  <->  ( x  e.  A  /\  y  =  ( F `  x ) ) ) )
1211opabbidv 3926 . . 3  |-  ( F  Fn  A  ->  { <. x ,  y >.  |  x F y }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
133, 12eqtrd 2127 . 2  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
14 df-mpt 3923 . 2  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
1513, 14syl6eqr 2145 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1296    e. wcel 1445   class class class wbr 3867   {copab 3920    |-> cmpt 3921   Rel wrel 4472    Fn wfn 5044   ` cfv 5049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fn 5052  df-fv 5057
This theorem is referenced by:  fnrnfv  5386  feqmptd  5392  dffn5imf  5394  eqfnfv  5436  fndmin  5445  fcompt  5506  resfunexg  5557  eufnfv  5564  fnovim  5791  offveqb  5912  caofinvl  5915  oprabco  6020  df1st2  6022  df2nd2  6023  xpen  6641
  Copyright terms: Public domain W3C validator