ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi2 Unicode version

Theorem fcoi2 5399
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 5222 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 cores 5134 . . 3  |-  ( ran 
F  C_  B  ->  ( (  _I  |`  B )  o.  F )  =  (  _I  o.  F
) )
3 fnrel 5316 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
4 coi2 5147 . . . 4  |-  ( Rel 
F  ->  (  _I  o.  F )  =  F )
53, 4syl 14 . . 3  |-  ( F  Fn  A  ->  (  _I  o.  F )  =  F )
62, 5sylan9eqr 2232 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  ->  ( (  _I  |`  B )  o.  F )  =  F )
71, 6sylbi 121 1  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    C_ wss 3131    _I cid 4290   ran crn 4629    |` cres 4630    o. ccom 4632   Rel wrel 4633    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-fun 5220  df-fn 5221  df-f 5222
This theorem is referenced by:  fcof1o  5792  mapen  6848  hashfacen  10818
  Copyright terms: Public domain W3C validator