ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi2 Unicode version

Theorem fcoi2 5436
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 5259 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 cores 5170 . . 3  |-  ( ran 
F  C_  B  ->  ( (  _I  |`  B )  o.  F )  =  (  _I  o.  F
) )
3 fnrel 5353 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
4 coi2 5183 . . . 4  |-  ( Rel 
F  ->  (  _I  o.  F )  =  F )
53, 4syl 14 . . 3  |-  ( F  Fn  A  ->  (  _I  o.  F )  =  F )
62, 5sylan9eqr 2248 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  ->  ( (  _I  |`  B )  o.  F )  =  F )
71, 6sylbi 121 1  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3154    _I cid 4320   ran crn 4661    |` cres 4662    o. ccom 4664   Rel wrel 4665    Fn wfn 5250   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  fcof1o  5833  mapen  6904  hashfacen  10910
  Copyright terms: Public domain W3C validator