ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi2 Unicode version

Theorem fcoi2 5479
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 5294 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 cores 5205 . . 3  |-  ( ran 
F  C_  B  ->  ( (  _I  |`  B )  o.  F )  =  (  _I  o.  F
) )
3 fnrel 5391 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
4 coi2 5218 . . . 4  |-  ( Rel 
F  ->  (  _I  o.  F )  =  F )
53, 4syl 14 . . 3  |-  ( F  Fn  A  ->  (  _I  o.  F )  =  F )
62, 5sylan9eqr 2262 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  ->  ( (  _I  |`  B )  o.  F )  =  F )
71, 6sylbi 121 1  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    C_ wss 3174    _I cid 4353   ran crn 4694    |` cres 4695    o. ccom 4697   Rel wrel 4698    Fn wfn 5285   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  fcof1o  5881  mapen  6968  hashfacen  11018
  Copyright terms: Public domain W3C validator