ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fcoi2 Unicode version

Theorem fcoi2 5369
Description: Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fcoi2  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )

Proof of Theorem fcoi2
StepHypRef Expression
1 df-f 5192 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 cores 5107 . . 3  |-  ( ran 
F  C_  B  ->  ( (  _I  |`  B )  o.  F )  =  (  _I  o.  F
) )
3 fnrel 5286 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
4 coi2 5120 . . . 4  |-  ( Rel 
F  ->  (  _I  o.  F )  =  F )
53, 4syl 14 . . 3  |-  ( F  Fn  A  ->  (  _I  o.  F )  =  F )
62, 5sylan9eqr 2221 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  ->  ( (  _I  |`  B )  o.  F )  =  F )
71, 6sylbi 120 1  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    C_ wss 3116    _I cid 4266   ran crn 4605    |` cres 4606    o. ccom 4608   Rel wrel 4609    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  fcof1o  5757  mapen  6812  hashfacen  10749
  Copyright terms: Public domain W3C validator