ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv Unicode version

Theorem f1ocnv 5388
Description: The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1ocnv  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )

Proof of Theorem f1ocnv
StepHypRef Expression
1 fnrel 5229 . . . . 5  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel2 4997 . . . . . 6  |-  ( Rel 
F  <->  `' `' F  =  F
)
3 fneq1 5219 . . . . . . 7  |-  ( `' `' F  =  F  ->  ( `' `' F  Fn  A  <->  F  Fn  A
) )
43biimprd 157 . . . . . 6  |-  ( `' `' F  =  F  ->  ( F  Fn  A  ->  `' `' F  Fn  A
) )
52, 4sylbi 120 . . . . 5  |-  ( Rel 
F  ->  ( F  Fn  A  ->  `' `' F  Fn  A )
)
61, 5mpcom 36 . . . 4  |-  ( F  Fn  A  ->  `' `' F  Fn  A
)
76anim2i 340 . . 3  |-  ( ( `' F  Fn  B  /\  F  Fn  A
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
87ancoms 266 . 2  |-  ( ( F  Fn  A  /\  `' F  Fn  B
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
9 dff1o4 5383 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
10 dff1o4 5383 . 2  |-  ( `' F : B -1-1-onto-> A  <->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
118, 9, 103imtr4i 200 1  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   `'ccnv 4546   Rel wrel 4552    Fn wfn 5126   -1-1-onto->wf1o 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138
This theorem is referenced by:  f1ocnvb  5389  f1orescnv  5391  f1imacnv  5392  f1cnv  5399  f1ococnv1  5404  f1oresrab  5593  f1ocnvfv2  5687  f1ocnvdm  5690  f1ocnvfvrneq  5691  fcof1o  5698  isocnv  5720  f1ofveu  5770  mapsnf1o3  6599  ener  6681  en0  6697  en1  6701  mapen  6748  ssenen  6753  preimaf1ofi  6847  ordiso2  6928  caseinl  6984  caseinr  6985  ctssdccl  7004  ctssdclemr  7005  enomnilem  7018  enmkvlem  7043  enwomnilem  7050  cc3  7100  fnn0nninf  10241  0tonninf  10243  1tonninf  10244  iseqf1olemkle  10288  iseqf1olemklt  10289  iseqf1olemqcl  10290  iseqf1olemnab  10292  iseqf1olemmo  10296  iseqf1olemqk  10298  seq3f1olemqsumkj  10302  seq3f1olemqsumk  10303  seq3f1olemstep  10305  hashfz1  10561  hashfacen  10611  seq3coll  10617  cnrecnv  10714  nnf1o  11177  summodclem3  11181  summodclem2a  11182  prodmodclem3  11376  prodmodclem2a  11377  sqpweven  11889  2sqpwodd  11890  phimullem  11937  xpnnen  11943  ennnfonelemjn  11951  ennnfonelemp1  11955  ennnfonelemhdmp1  11958  ennnfonelemss  11959  ennnfonelemkh  11961  ennnfonelemhf1o  11962  ennnfonelemex  11963  ennnfonelemf1  11967  ennnfonelemnn0  11971  ennnfonelemim  11973  ctinfomlemom  11976  ctiunctlemfo  11988  txhmeo  12527  dfrelog  12989  relogf1o  12990  012of  13363  exmidsbthrlem  13392  iswomninnlem  13417
  Copyright terms: Public domain W3C validator