ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv Unicode version

Theorem f1ocnv 5537
Description: The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1ocnv  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )

Proof of Theorem f1ocnv
StepHypRef Expression
1 fnrel 5373 . . . . 5  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel2 5134 . . . . . 6  |-  ( Rel 
F  <->  `' `' F  =  F
)
3 fneq1 5363 . . . . . . 7  |-  ( `' `' F  =  F  ->  ( `' `' F  Fn  A  <->  F  Fn  A
) )
43biimprd 158 . . . . . 6  |-  ( `' `' F  =  F  ->  ( F  Fn  A  ->  `' `' F  Fn  A
) )
52, 4sylbi 121 . . . . 5  |-  ( Rel 
F  ->  ( F  Fn  A  ->  `' `' F  Fn  A )
)
61, 5mpcom 36 . . . 4  |-  ( F  Fn  A  ->  `' `' F  Fn  A
)
76anim2i 342 . . 3  |-  ( ( `' F  Fn  B  /\  F  Fn  A
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
87ancoms 268 . 2  |-  ( ( F  Fn  A  /\  `' F  Fn  B
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
9 dff1o4 5532 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
10 dff1o4 5532 . 2  |-  ( `' F : B -1-1-onto-> A  <->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
118, 9, 103imtr4i 201 1  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   `'ccnv 4675   Rel wrel 4681    Fn wfn 5267   -1-1-onto->wf1o 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279
This theorem is referenced by:  f1ocnvb  5538  f1orescnv  5540  f1imacnv  5541  f1cnv  5548  f1ococnv1  5553  f1oresrab  5747  f1ocnvfv2  5849  f1ocnvdm  5852  f1ocnvfvrneq  5853  fcof1o  5860  isocnv  5882  f1ofveu  5934  mapsnf1o3  6786  ener  6873  en0  6889  en1  6893  en2  6914  mapen  6945  ssenen  6950  preimaf1ofi  7055  ordiso2  7139  caseinl  7195  caseinr  7196  ctssdccl  7215  ctssdclemr  7216  enomnilem  7242  enmkvlem  7265  enwomnilem  7273  cc3  7382  fnn0nninf  10585  0tonninf  10587  1tonninf  10588  iseqf1olemkle  10644  iseqf1olemklt  10645  iseqf1olemqcl  10646  iseqf1olemnab  10648  iseqf1olemmo  10652  iseqf1olemqk  10654  seq3f1olemqsumkj  10658  seq3f1olemqsumk  10659  seq3f1olemstep  10661  seqf1oglem1  10666  seqf1oglem2  10667  hashfz1  10930  hashfacen  10983  seq3coll  10989  cnrecnv  11254  nnf1o  11720  summodclem3  11724  summodclem2a  11725  prodmodclem3  11919  prodmodclem2a  11920  fprodssdc  11934  sqpweven  12530  2sqpwodd  12531  phimullem  12580  eulerthlemh  12586  1arith2  12724  xpnnen  12798  ennnfonelemjn  12806  ennnfonelemp1  12810  ennnfonelemhdmp1  12813  ennnfonelemss  12814  ennnfonelemkh  12816  ennnfonelemhf1o  12817  ennnfonelemex  12818  ennnfonelemf1  12822  ennnfonelemnn0  12826  ennnfonelemim  12828  ctinfomlemom  12831  ctiunctlemfo  12843  ssnnctlemct  12850  mhmf1o  13335  ghmf1o  13644  gsumfzreidx  13706  znleval  14448  txhmeo  14824  dfrelog  15365  relogf1o  15366  012of  15967  domomsubct  15975  exmidsbthrlem  15998  iswomninnlem  16025
  Copyright terms: Public domain W3C validator