ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv Unicode version

Theorem f1ocnv 5520
Description: The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1ocnv  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )

Proof of Theorem f1ocnv
StepHypRef Expression
1 fnrel 5357 . . . . 5  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel2 5121 . . . . . 6  |-  ( Rel 
F  <->  `' `' F  =  F
)
3 fneq1 5347 . . . . . . 7  |-  ( `' `' F  =  F  ->  ( `' `' F  Fn  A  <->  F  Fn  A
) )
43biimprd 158 . . . . . 6  |-  ( `' `' F  =  F  ->  ( F  Fn  A  ->  `' `' F  Fn  A
) )
52, 4sylbi 121 . . . . 5  |-  ( Rel 
F  ->  ( F  Fn  A  ->  `' `' F  Fn  A )
)
61, 5mpcom 36 . . . 4  |-  ( F  Fn  A  ->  `' `' F  Fn  A
)
76anim2i 342 . . 3  |-  ( ( `' F  Fn  B  /\  F  Fn  A
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
87ancoms 268 . 2  |-  ( ( F  Fn  A  /\  `' F  Fn  B
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
9 dff1o4 5515 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
10 dff1o4 5515 . 2  |-  ( `' F : B -1-1-onto-> A  <->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
118, 9, 103imtr4i 201 1  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   `'ccnv 4663   Rel wrel 4669    Fn wfn 5254   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  f1ocnvb  5521  f1orescnv  5523  f1imacnv  5524  f1cnv  5531  f1ococnv1  5536  f1oresrab  5730  f1ocnvfv2  5828  f1ocnvdm  5831  f1ocnvfvrneq  5832  fcof1o  5839  isocnv  5861  f1ofveu  5913  mapsnf1o3  6765  ener  6847  en0  6863  en1  6867  mapen  6916  ssenen  6921  preimaf1ofi  7026  ordiso2  7110  caseinl  7166  caseinr  7167  ctssdccl  7186  ctssdclemr  7187  enomnilem  7213  enmkvlem  7236  enwomnilem  7244  cc3  7351  fnn0nninf  10547  0tonninf  10549  1tonninf  10550  iseqf1olemkle  10606  iseqf1olemklt  10607  iseqf1olemqcl  10608  iseqf1olemnab  10610  iseqf1olemmo  10614  iseqf1olemqk  10616  seq3f1olemqsumkj  10620  seq3f1olemqsumk  10621  seq3f1olemstep  10623  seqf1oglem1  10628  seqf1oglem2  10629  hashfz1  10892  hashfacen  10945  seq3coll  10951  cnrecnv  11092  nnf1o  11558  summodclem3  11562  summodclem2a  11563  prodmodclem3  11757  prodmodclem2a  11758  fprodssdc  11772  sqpweven  12368  2sqpwodd  12369  phimullem  12418  eulerthlemh  12424  1arith2  12562  xpnnen  12636  ennnfonelemjn  12644  ennnfonelemp1  12648  ennnfonelemhdmp1  12651  ennnfonelemss  12652  ennnfonelemkh  12654  ennnfonelemhf1o  12655  ennnfonelemex  12656  ennnfonelemf1  12660  ennnfonelemnn0  12664  ennnfonelemim  12666  ctinfomlemom  12669  ctiunctlemfo  12681  ssnnctlemct  12688  mhmf1o  13172  ghmf1o  13481  gsumfzreidx  13543  znleval  14285  txhmeo  14639  dfrelog  15180  relogf1o  15181  012of  15724  domomsubct  15732  exmidsbthrlem  15753  iswomninnlem  15780
  Copyright terms: Public domain W3C validator