ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnv Unicode version

Theorem f1ocnv 5585
Description: The converse of a one-to-one onto function is also one-to-one onto. (Contributed by NM, 11-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1ocnv  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )

Proof of Theorem f1ocnv
StepHypRef Expression
1 fnrel 5419 . . . . 5  |-  ( F  Fn  A  ->  Rel  F )
2 dfrel2 5179 . . . . . 6  |-  ( Rel 
F  <->  `' `' F  =  F
)
3 fneq1 5409 . . . . . . 7  |-  ( `' `' F  =  F  ->  ( `' `' F  Fn  A  <->  F  Fn  A
) )
43biimprd 158 . . . . . 6  |-  ( `' `' F  =  F  ->  ( F  Fn  A  ->  `' `' F  Fn  A
) )
52, 4sylbi 121 . . . . 5  |-  ( Rel 
F  ->  ( F  Fn  A  ->  `' `' F  Fn  A )
)
61, 5mpcom 36 . . . 4  |-  ( F  Fn  A  ->  `' `' F  Fn  A
)
76anim2i 342 . . 3  |-  ( ( `' F  Fn  B  /\  F  Fn  A
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
87ancoms 268 . 2  |-  ( ( F  Fn  A  /\  `' F  Fn  B
)  ->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
9 dff1o4 5580 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
10 dff1o4 5580 . 2  |-  ( `' F : B -1-1-onto-> A  <->  ( `' F  Fn  B  /\  `' `' F  Fn  A
) )
118, 9, 103imtr4i 201 1  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   `'ccnv 4718   Rel wrel 4724    Fn wfn 5313   -1-1-onto->wf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325
This theorem is referenced by:  f1ocnvb  5586  f1orescnv  5588  f1imacnv  5589  f1cnv  5596  f1ococnv1  5601  f1oresrab  5800  f1ocnvfv2  5902  f1ocnvdm  5905  f1ocnvfvrneq  5906  fcof1o  5913  isocnv  5935  f1ofveu  5989  mapsnf1o3  6844  ener  6931  en0  6947  en1  6951  en2  6973  mapen  7007  ssenen  7012  preimaf1ofi  7118  ordiso2  7202  caseinl  7258  caseinr  7259  ctssdccl  7278  ctssdclemr  7279  enomnilem  7305  enmkvlem  7328  enwomnilem  7336  cc3  7454  fnn0nninf  10660  0tonninf  10662  1tonninf  10663  iseqf1olemkle  10719  iseqf1olemklt  10720  iseqf1olemqcl  10721  iseqf1olemnab  10723  iseqf1olemmo  10727  iseqf1olemqk  10729  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734  seq3f1olemstep  10736  seqf1oglem1  10741  seqf1oglem2  10742  hashfz1  11005  hashfacen  11058  seq3coll  11064  cnrecnv  11421  nnf1o  11887  summodclem3  11891  summodclem2a  11892  prodmodclem3  12086  prodmodclem2a  12087  fprodssdc  12101  sqpweven  12697  2sqpwodd  12698  phimullem  12747  eulerthlemh  12753  1arith2  12891  xpnnen  12965  ennnfonelemjn  12973  ennnfonelemp1  12977  ennnfonelemhdmp1  12980  ennnfonelemss  12981  ennnfonelemkh  12983  ennnfonelemhf1o  12984  ennnfonelemex  12985  ennnfonelemf1  12989  ennnfonelemnn0  12993  ennnfonelemim  12995  ctinfomlemom  12998  ctiunctlemfo  13010  ssnnctlemct  13017  mhmf1o  13503  ghmf1o  13812  gsumfzreidx  13874  znleval  14617  txhmeo  14993  dfrelog  15534  relogf1o  15535  012of  16357  domomsubct  16367  exmidsbthrlem  16390  iswomninnlem  16417
  Copyright terms: Public domain W3C validator