ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topontopn Unicode version

Theorem topontopn 12829
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tsettps.a  |-  A  =  ( Base `  K
)
tsettps.j  |-  J  =  (TopSet `  K )
Assertion
Ref Expression
topontopn  |-  ( J  e.  (TopOn `  A
)  ->  J  =  ( TopOpen `  K )
)

Proof of Theorem topontopn
StepHypRef Expression
1 topontop 12806 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  J  e.  Top )
2 tsetslid 12568 . . . . . 6  |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
32slotslfn 12442 . . . . 5  |- TopSet  Fn  _V
4 fnrel 5296 . . . . 5  |-  (TopSet  Fn  _V  ->  Rel TopSet )
53, 4ax-mp 5 . . . 4  |-  Rel TopSet
6 0opn 12798 . . . . 5  |-  ( J  e.  Top  ->  (/)  e.  J
)
7 tsettps.j . . . . 5  |-  J  =  (TopSet `  K )
86, 7eleqtrdi 2263 . . . 4  |-  ( J  e.  Top  ->  (/)  e.  (TopSet `  K ) )
9 relelfvdm 5528 . . . 4  |-  ( ( Rel TopSet  /\  (/)  e.  (TopSet `  K ) )  ->  K  e.  dom TopSet )
105, 8, 9sylancr 412 . . 3  |-  ( J  e.  Top  ->  K  e.  dom TopSet )
111, 10syl 14 . 2  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  dom TopSet )
12 toponuni 12807 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  A  =  U. J )
13 eqimss2 3202 . . . 4  |-  ( A  =  U. J  ->  U. J  C_  A )
1412, 13syl 14 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  U. J  C_  A )
15 sspwuni 3957 . . 3  |-  ( J 
C_  ~P A  <->  U. J  C_  A )
1614, 15sylibr 133 . 2  |-  ( J  e.  (TopOn `  A
)  ->  J  C_  ~P A )
17 tsettps.a . . 3  |-  A  =  ( Base `  K
)
1817, 7topnidg 12592 . 2  |-  ( ( K  e.  dom TopSet  /\  J  C_ 
~P A )  ->  J  =  ( TopOpen `  K ) )
1911, 16, 18syl2anc 409 1  |-  ( J  e.  (TopOn `  A
)  ->  J  =  ( TopOpen `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   (/)c0 3414   ~Pcpw 3566   U.cuni 3796   dom cdm 4611   Rel wrel 4616    Fn wfn 5193   ` cfv 5198   Basecbs 12416  TopSetcts 12486   TopOpenctopn 12580   Topctop 12789  TopOnctopon 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-ndx 12419  df-slot 12420  df-base 12422  df-tset 12499  df-rest 12581  df-topn 12582  df-top 12790  df-topon 12803
This theorem is referenced by:  tsettps  12830
  Copyright terms: Public domain W3C validator