Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topontopn | Unicode version |
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | |
tsettps.j | TopSet |
Ref | Expression |
---|---|
topontopn | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12652 | . . 3 TopOn | |
2 | tsetslid 12545 | . . . . . 6 TopSet Slot TopSet TopSet | |
3 | 2 | slotslfn 12420 | . . . . 5 TopSet |
4 | fnrel 5286 | . . . . 5 TopSet TopSet | |
5 | 3, 4 | ax-mp 5 | . . . 4 TopSet |
6 | 0opn 12644 | . . . . 5 | |
7 | tsettps.j | . . . . 5 TopSet | |
8 | 6, 7 | eleqtrdi 2259 | . . . 4 TopSet |
9 | relelfvdm 5518 | . . . 4 TopSet TopSet TopSet | |
10 | 5, 8, 9 | sylancr 411 | . . 3 TopSet |
11 | 1, 10 | syl 14 | . 2 TopOn TopSet |
12 | toponuni 12653 | . . . 4 TopOn | |
13 | eqimss2 3197 | . . . 4 | |
14 | 12, 13 | syl 14 | . . 3 TopOn |
15 | sspwuni 3950 | . . 3 | |
16 | 14, 15 | sylibr 133 | . 2 TopOn |
17 | tsettps.a | . . 3 | |
18 | 17, 7 | topnidg 12569 | . 2 TopSet |
19 | 11, 16, 18 | syl2anc 409 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cvv 2726 wss 3116 c0 3409 cpw 3559 cuni 3789 cdm 4604 wrel 4609 wfn 5183 cfv 5188 cbs 12394 TopSetcts 12463 ctopn 12557 ctop 12635 TopOnctopon 12648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-ndx 12397 df-slot 12398 df-base 12400 df-tset 12476 df-rest 12558 df-topn 12559 df-top 12636 df-topon 12649 |
This theorem is referenced by: tsettps 12676 |
Copyright terms: Public domain | W3C validator |