Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > topontopn | Unicode version |
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tsettps.a | |
tsettps.j | TopSet |
Ref | Expression |
---|---|
topontopn | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 12806 | . . 3 TopOn | |
2 | tsetslid 12568 | . . . . . 6 TopSet Slot TopSet TopSet | |
3 | 2 | slotslfn 12442 | . . . . 5 TopSet |
4 | fnrel 5296 | . . . . 5 TopSet TopSet | |
5 | 3, 4 | ax-mp 5 | . . . 4 TopSet |
6 | 0opn 12798 | . . . . 5 | |
7 | tsettps.j | . . . . 5 TopSet | |
8 | 6, 7 | eleqtrdi 2263 | . . . 4 TopSet |
9 | relelfvdm 5528 | . . . 4 TopSet TopSet TopSet | |
10 | 5, 8, 9 | sylancr 412 | . . 3 TopSet |
11 | 1, 10 | syl 14 | . 2 TopOn TopSet |
12 | toponuni 12807 | . . . 4 TopOn | |
13 | eqimss2 3202 | . . . 4 | |
14 | 12, 13 | syl 14 | . . 3 TopOn |
15 | sspwuni 3957 | . . 3 | |
16 | 14, 15 | sylibr 133 | . 2 TopOn |
17 | tsettps.a | . . 3 | |
18 | 17, 7 | topnidg 12592 | . 2 TopSet |
19 | 11, 16, 18 | syl2anc 409 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 cvv 2730 wss 3121 c0 3414 cpw 3566 cuni 3796 cdm 4611 wrel 4616 wfn 5193 cfv 5198 cbs 12416 TopSetcts 12486 ctopn 12580 ctop 12789 TopOnctopon 12802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-ndx 12419 df-slot 12420 df-base 12422 df-tset 12499 df-rest 12581 df-topn 12582 df-top 12790 df-topon 12803 |
This theorem is referenced by: tsettps 12830 |
Copyright terms: Public domain | W3C validator |