ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss2 Unicode version

Theorem neiss2 14614
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiss2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )

Proof of Theorem neiss2
StepHypRef Expression
1 neifval.1 . . . . . 6  |-  X  = 
U. J
21neif 14613 . . . . 5  |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
~P X )
3 fnrel 5372 . . . . 5  |-  ( ( nei `  J )  Fn  ~P X  ->  Rel  ( nei `  J
) )
42, 3syl 14 . . . 4  |-  ( J  e.  Top  ->  Rel  ( nei `  J ) )
5 relelfvdm 5608 . . . 4  |-  ( ( Rel  ( nei `  J
)  /\  N  e.  ( ( nei `  J
) `  S )
)  ->  S  e.  dom  ( nei `  J
) )
64, 5sylan 283 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  e.  dom  ( nei `  J ) )
7 fndm 5373 . . . . . 6  |-  ( ( nei `  J )  Fn  ~P X  ->  dom  ( nei `  J
)  =  ~P X
)
82, 7syl 14 . . . . 5  |-  ( J  e.  Top  ->  dom  ( nei `  J )  =  ~P X )
98eleq2d 2275 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  dom  ( nei `  J )  <->  S  e.  ~P X ) )
109adantr 276 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( S  e.  dom  ( nei `  J )  <-> 
S  e.  ~P X
) )
116, 10mpbid 147 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  e.  ~P X
)
1211elpwid 3627 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   dom cdm 4675   Rel wrel 4680    Fn wfn 5266   ` cfv 5271   Topctop 14469   neicnei 14610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 14470  df-nei 14611
This theorem is referenced by:  neii1  14619  neii2  14621  neiss  14622  ssnei2  14629  topssnei  14634  innei  14635  neitx  14740
  Copyright terms: Public domain W3C validator