ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss2 Unicode version

Theorem neiss2 12782
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiss2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )

Proof of Theorem neiss2
StepHypRef Expression
1 neifval.1 . . . . . 6  |-  X  = 
U. J
21neif 12781 . . . . 5  |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
~P X )
3 fnrel 5286 . . . . 5  |-  ( ( nei `  J )  Fn  ~P X  ->  Rel  ( nei `  J
) )
42, 3syl 14 . . . 4  |-  ( J  e.  Top  ->  Rel  ( nei `  J ) )
5 relelfvdm 5518 . . . 4  |-  ( ( Rel  ( nei `  J
)  /\  N  e.  ( ( nei `  J
) `  S )
)  ->  S  e.  dom  ( nei `  J
) )
64, 5sylan 281 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  e.  dom  ( nei `  J ) )
7 fndm 5287 . . . . . 6  |-  ( ( nei `  J )  Fn  ~P X  ->  dom  ( nei `  J
)  =  ~P X
)
82, 7syl 14 . . . . 5  |-  ( J  e.  Top  ->  dom  ( nei `  J )  =  ~P X )
98eleq2d 2236 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  dom  ( nei `  J )  <->  S  e.  ~P X ) )
109adantr 274 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( S  e.  dom  ( nei `  J )  <-> 
S  e.  ~P X
) )
116, 10mpbid 146 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  e.  ~P X
)
1211elpwid 3570 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   dom cdm 4604   Rel wrel 4609    Fn wfn 5183   ` cfv 5188   Topctop 12635   neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-top 12636  df-nei 12779
This theorem is referenced by:  neii1  12787  neii2  12789  neiss  12790  ssnei2  12797  topssnei  12802  innei  12803  neitx  12908
  Copyright terms: Public domain W3C validator