ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss2 Unicode version

Theorem neiss2 13727
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiss2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )

Proof of Theorem neiss2
StepHypRef Expression
1 neifval.1 . . . . . 6  |-  X  = 
U. J
21neif 13726 . . . . 5  |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
~P X )
3 fnrel 5316 . . . . 5  |-  ( ( nei `  J )  Fn  ~P X  ->  Rel  ( nei `  J
) )
42, 3syl 14 . . . 4  |-  ( J  e.  Top  ->  Rel  ( nei `  J ) )
5 relelfvdm 5549 . . . 4  |-  ( ( Rel  ( nei `  J
)  /\  N  e.  ( ( nei `  J
) `  S )
)  ->  S  e.  dom  ( nei `  J
) )
64, 5sylan 283 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  e.  dom  ( nei `  J ) )
7 fndm 5317 . . . . . 6  |-  ( ( nei `  J )  Fn  ~P X  ->  dom  ( nei `  J
)  =  ~P X
)
82, 7syl 14 . . . . 5  |-  ( J  e.  Top  ->  dom  ( nei `  J )  =  ~P X )
98eleq2d 2247 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  dom  ( nei `  J )  <->  S  e.  ~P X ) )
109adantr 276 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( S  e.  dom  ( nei `  J )  <-> 
S  e.  ~P X
) )
116, 10mpbid 147 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  e.  ~P X
)
1211elpwid 3588 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    C_ wss 3131   ~Pcpw 3577   U.cuni 3811   dom cdm 4628   Rel wrel 4633    Fn wfn 5213   ` cfv 5218   Topctop 13582   neicnei 13723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13583  df-nei 13724
This theorem is referenced by:  neii1  13732  neii2  13734  neiss  13735  ssnei2  13742  topssnei  13747  innei  13748  neitx  13853
  Copyright terms: Public domain W3C validator