ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldrcl Unicode version

Theorem cldrcl 14607
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  Top )

Proof of Theorem cldrcl
StepHypRef Expression
1 fncld 14603 . . . 4  |-  Clsd  Fn  Top
2 fnrel 5373 . . . 4  |-  ( Clsd 
Fn  Top  ->  Rel  Clsd )
31, 2ax-mp 5 . . 3  |-  Rel  Clsd
4 relelfvdm 5610 . . 3  |-  ( ( Rel  Clsd  /\  C  e.  ( Clsd `  J
) )  ->  J  e.  dom  Clsd )
53, 4mpan 424 . 2  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  dom  Clsd )
6 fndm 5374 . . 3  |-  ( Clsd 
Fn  Top  ->  dom  Clsd  =  Top )
71, 6ax-mp 5 . 2  |-  dom  Clsd  =  Top
85, 7eleqtrdi 2298 1  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   dom cdm 4676   Rel wrel 4681    Fn wfn 5267   ` cfv 5272   Topctop 14502   Clsdccld 14597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-cld 14600
This theorem is referenced by:  cldss  14610  cldopn  14612  difopn  14613  uncld  14618  cldcls  14619  clsss2  14634
  Copyright terms: Public domain W3C validator