ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldrcl Unicode version

Theorem cldrcl 12114
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  Top )

Proof of Theorem cldrcl
StepHypRef Expression
1 fncld 12110 . . . 4  |-  Clsd  Fn  Top
2 fnrel 5179 . . . 4  |-  ( Clsd 
Fn  Top  ->  Rel  Clsd )
31, 2ax-mp 7 . . 3  |-  Rel  Clsd
4 relelfvdm 5407 . . 3  |-  ( ( Rel  Clsd  /\  C  e.  ( Clsd `  J
) )  ->  J  e.  dom  Clsd )
53, 4mpan 418 . 2  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  dom  Clsd )
6 fndm 5180 . . 3  |-  ( Clsd 
Fn  Top  ->  dom  Clsd  =  Top )
71, 6ax-mp 7 . 2  |-  dom  Clsd  =  Top
85, 7syl6eleq 2207 1  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   dom cdm 4499   Rel wrel 4504    Fn wfn 5076   ` cfv 5081   Topctop 12007   Clsdccld 12104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fn 5084  df-fv 5089  df-cld 12107
This theorem is referenced by:  cldss  12117  cldopn  12119  difopn  12120  uncld  12125  cldcls  12126  clsss2  12141
  Copyright terms: Public domain W3C validator