| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnresin2 | GIF version | ||
| Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| fnresin2 | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 3398 | . 2 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
| 2 | fnssres 5397 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (𝐵 ∩ 𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵 ∩ 𝐴)) Fn (𝐵 ∩ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∩ cin 3169 ⊆ wss 3170 ↾ cres 4684 Fn wfn 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-res 4694 df-fun 5281 df-fn 5282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |