ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresin2 GIF version

Theorem fnresin2 5369
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))

Proof of Theorem fnresin2
StepHypRef Expression
1 inss2 3380 . 2 (𝐵𝐴) ⊆ 𝐴
2 fnssres 5367 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
31, 2mpan2 425 1 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  cin 3152  wss 3153  cres 4661   Fn wfn 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-fun 5256  df-fn 5257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator