ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnresin2 GIF version

Theorem fnresin2 5400
Description: Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
Assertion
Ref Expression
fnresin2 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))

Proof of Theorem fnresin2
StepHypRef Expression
1 inss2 3398 . 2 (𝐵𝐴) ⊆ 𝐴
2 fnssres 5397 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴) ⊆ 𝐴) → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
31, 2mpan2 425 1 (𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  cin 3169  wss 3170  cres 4684   Fn wfn 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-res 4694  df-fun 5281  df-fn 5282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator