ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeq Unicode version

Theorem funeq 5238
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3212 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 funss 5237 . . 3  |-  ( B 
C_  A  ->  ( Fun  A  ->  Fun  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( Fun  A  ->  Fun  B ) )
4 eqimss 3211 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 funss 5237 . . 3  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( Fun  B  ->  Fun  A ) )
73, 6impbid 129 1  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    C_ wss 3131   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by:  funeqi  5239  funeqd  5240  fununi  5286  funcnvuni  5287  cnvresid  5292  fneq1  5306  elpmg  6666  fundmeng  6809
  Copyright terms: Public domain W3C validator