ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeq Unicode version

Theorem funeq 5310
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3256 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 funss 5309 . . 3  |-  ( B 
C_  A  ->  ( Fun  A  ->  Fun  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( Fun  A  ->  Fun  B ) )
4 eqimss 3255 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 funss 5309 . . 3  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( Fun  B  ->  Fun  A ) )
73, 6impbid 129 1  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    C_ wss 3174   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  funeqi  5311  funeqd  5312  fununi  5361  funcnvuni  5362  cnvresid  5367  fneq1  5381  funop  5786  elpmg  6774  fundmeng  6923
  Copyright terms: Public domain W3C validator