ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeq Unicode version

Theorem funeq 5338
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3279 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 funss 5337 . . 3  |-  ( B 
C_  A  ->  ( Fun  A  ->  Fun  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( Fun  A  ->  Fun  B ) )
4 eqimss 3278 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 funss 5337 . . 3  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( Fun  B  ->  Fun  A ) )
73, 6impbid 129 1  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    C_ wss 3197   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by:  funeqi  5339  funeqd  5340  fununi  5389  funcnvuni  5390  cnvresid  5395  fneq1  5409  funop  5818  elpmg  6811  fundmeng  6960  usgredgop  15971
  Copyright terms: Public domain W3C validator