| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeq | Unicode version | ||
| Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3279 |
. . 3
| |
| 2 | funss 5337 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eqimss 3278 |
. . 3
| |
| 5 | funss 5337 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | 3, 6 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-fun 5320 |
| This theorem is referenced by: funeqi 5339 funeqd 5340 fununi 5389 funcnvuni 5390 cnvresid 5395 fneq1 5409 funop 5818 elpmg 6811 fundmeng 6960 usgredgop 15971 |
| Copyright terms: Public domain | W3C validator |