ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeq Unicode version

Theorem funeq 5208
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3197 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 funss 5207 . . 3  |-  ( B 
C_  A  ->  ( Fun  A  ->  Fun  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( Fun  A  ->  Fun  B ) )
4 eqimss 3196 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 funss 5207 . . 3  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( Fun  B  ->  Fun  A ) )
73, 6impbid 128 1  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    C_ wss 3116   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by:  funeqi  5209  funeqd  5210  fununi  5256  funcnvuni  5257  cnvresid  5262  fneq1  5276  elpmg  6630  fundmeng  6773
  Copyright terms: Public domain W3C validator