ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpmg Unicode version

Theorem elpmg 6811
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
elpmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  C_  ( B  X.  A
) ) ) )

Proof of Theorem elpmg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 pmvalg 6806 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ^pm  B
)  =  { g  e.  ~P ( B  X.  A )  |  Fun  g } )
21eleq2d 2299 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  C  e.  { g  e. 
~P ( B  X.  A )  |  Fun  g } ) )
3 funeq 5338 . . . . 5  |-  ( g  =  C  ->  ( Fun  g  <->  Fun  C ) )
43elrab 2959 . . . 4  |-  ( C  e.  { g  e. 
~P ( B  X.  A )  |  Fun  g }  <->  ( C  e. 
~P ( B  X.  A )  /\  Fun  C ) )
52, 4bitrdi 196 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( C  e.  ~P ( B  X.  A )  /\  Fun  C ) ) )
6 ancom 266 . . 3  |-  ( ( C  e.  ~P ( B  X.  A )  /\  Fun  C )  <->  ( Fun  C  /\  C  e.  ~P ( B  X.  A
) ) )
75, 6bitrdi 196 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  e.  ~P ( B  X.  A ) ) ) )
8 elex 2811 . . . . 5  |-  ( C  e.  ~P ( B  X.  A )  ->  C  e.  _V )
98a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ~P ( B  X.  A
)  ->  C  e.  _V ) )
10 xpexg 4833 . . . . . 6  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  A
)  e.  _V )
1110ancoms 268 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  A
)  e.  _V )
12 ssexg 4223 . . . . . 6  |-  ( ( C  C_  ( B  X.  A )  /\  ( B  X.  A )  e. 
_V )  ->  C  e.  _V )
1312expcom 116 . . . . 5  |-  ( ( B  X.  A )  e.  _V  ->  ( C  C_  ( B  X.  A )  ->  C  e.  _V ) )
1411, 13syl 14 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  C_  ( B  X.  A )  ->  C  e.  _V )
)
15 elpwg 3657 . . . . 5  |-  ( C  e.  _V  ->  ( C  e.  ~P ( B  X.  A )  <->  C  C_  ( B  X.  A ) ) )
1615a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  _V  ->  ( C  e.  ~P ( B  X.  A
)  <->  C  C_  ( B  X.  A ) ) ) )
179, 14, 16pm5.21ndd 710 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ~P ( B  X.  A
)  <->  C  C_  ( B  X.  A ) ) )
1817anbi2d 464 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( Fun  C  /\  C  e.  ~P ( B  X.  A
) )  <->  ( Fun  C  /\  C  C_  ( B  X.  A ) ) ) )
197, 18bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  C_  ( B  X.  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649    X. cxp 4717   Fun wfun 5312  (class class class)co 6001    ^pm cpm 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pm 6798
This theorem is referenced by:  elpm2g  6812  pmss12g  6822  elpm  6826  pmsspw  6830  ennnfonelemj0  12972  lmfss  14918
  Copyright terms: Public domain W3C validator