| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elpmg | Unicode version | ||
| Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| elpmg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmvalg 6718 | 
. . . . 5
 | |
| 2 | 1 | eleq2d 2266 | 
. . . 4
 | 
| 3 | funeq 5278 | 
. . . . 5
 | |
| 4 | 3 | elrab 2920 | 
. . . 4
 | 
| 5 | 2, 4 | bitrdi 196 | 
. . 3
 | 
| 6 | ancom 266 | 
. . 3
 | |
| 7 | 5, 6 | bitrdi 196 | 
. 2
 | 
| 8 | elex 2774 | 
. . . . 5
 | |
| 9 | 8 | a1i 9 | 
. . . 4
 | 
| 10 | xpexg 4777 | 
. . . . . 6
 | |
| 11 | 10 | ancoms 268 | 
. . . . 5
 | 
| 12 | ssexg 4172 | 
. . . . . 6
 | |
| 13 | 12 | expcom 116 | 
. . . . 5
 | 
| 14 | 11, 13 | syl 14 | 
. . . 4
 | 
| 15 | elpwg 3613 | 
. . . . 5
 | |
| 16 | 15 | a1i 9 | 
. . . 4
 | 
| 17 | 9, 14, 16 | pm5.21ndd 706 | 
. . 3
 | 
| 18 | 17 | anbi2d 464 | 
. 2
 | 
| 19 | 7, 18 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pm 6710 | 
| This theorem is referenced by: elpm2g 6724 pmss12g 6734 elpm 6738 pmsspw 6742 ennnfonelemj0 12618 lmfss 14480 | 
| Copyright terms: Public domain | W3C validator |