ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpmg Unicode version

Theorem elpmg 6751
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
elpmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  C_  ( B  X.  A
) ) ) )

Proof of Theorem elpmg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 pmvalg 6746 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ^pm  B
)  =  { g  e.  ~P ( B  X.  A )  |  Fun  g } )
21eleq2d 2275 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  C  e.  { g  e. 
~P ( B  X.  A )  |  Fun  g } ) )
3 funeq 5291 . . . . 5  |-  ( g  =  C  ->  ( Fun  g  <->  Fun  C ) )
43elrab 2929 . . . 4  |-  ( C  e.  { g  e. 
~P ( B  X.  A )  |  Fun  g }  <->  ( C  e. 
~P ( B  X.  A )  /\  Fun  C ) )
52, 4bitrdi 196 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( C  e.  ~P ( B  X.  A )  /\  Fun  C ) ) )
6 ancom 266 . . 3  |-  ( ( C  e.  ~P ( B  X.  A )  /\  Fun  C )  <->  ( Fun  C  /\  C  e.  ~P ( B  X.  A
) ) )
75, 6bitrdi 196 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  e.  ~P ( B  X.  A ) ) ) )
8 elex 2783 . . . . 5  |-  ( C  e.  ~P ( B  X.  A )  ->  C  e.  _V )
98a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ~P ( B  X.  A
)  ->  C  e.  _V ) )
10 xpexg 4789 . . . . . 6  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  A
)  e.  _V )
1110ancoms 268 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  A
)  e.  _V )
12 ssexg 4183 . . . . . 6  |-  ( ( C  C_  ( B  X.  A )  /\  ( B  X.  A )  e. 
_V )  ->  C  e.  _V )
1312expcom 116 . . . . 5  |-  ( ( B  X.  A )  e.  _V  ->  ( C  C_  ( B  X.  A )  ->  C  e.  _V ) )
1411, 13syl 14 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  C_  ( B  X.  A )  ->  C  e.  _V )
)
15 elpwg 3624 . . . . 5  |-  ( C  e.  _V  ->  ( C  e.  ~P ( B  X.  A )  <->  C  C_  ( B  X.  A ) ) )
1615a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  _V  ->  ( C  e.  ~P ( B  X.  A
)  <->  C  C_  ( B  X.  A ) ) ) )
179, 14, 16pm5.21ndd 707 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ~P ( B  X.  A
)  <->  C  C_  ( B  X.  A ) ) )
1817anbi2d 464 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( Fun  C  /\  C  e.  ~P ( B  X.  A
) )  <->  ( Fun  C  /\  C  C_  ( B  X.  A ) ) ) )
197, 18bitrd 188 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  C_  ( B  X.  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   {crab 2488   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616    X. cxp 4673   Fun wfun 5265  (class class class)co 5944    ^pm cpm 6736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pm 6738
This theorem is referenced by:  elpm2g  6752  pmss12g  6762  elpm  6766  pmsspw  6770  ennnfonelemj0  12772  lmfss  14716
  Copyright terms: Public domain W3C validator