ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpmg Unicode version

Theorem elpmg 6642
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
elpmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  C_  ( B  X.  A
) ) ) )

Proof of Theorem elpmg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 pmvalg 6637 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ^pm  B
)  =  { g  e.  ~P ( B  X.  A )  |  Fun  g } )
21eleq2d 2240 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  C  e.  { g  e. 
~P ( B  X.  A )  |  Fun  g } ) )
3 funeq 5218 . . . . 5  |-  ( g  =  C  ->  ( Fun  g  <->  Fun  C ) )
43elrab 2886 . . . 4  |-  ( C  e.  { g  e. 
~P ( B  X.  A )  |  Fun  g }  <->  ( C  e. 
~P ( B  X.  A )  /\  Fun  C ) )
52, 4bitrdi 195 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( C  e.  ~P ( B  X.  A )  /\  Fun  C ) ) )
6 ancom 264 . . 3  |-  ( ( C  e.  ~P ( B  X.  A )  /\  Fun  C )  <->  ( Fun  C  /\  C  e.  ~P ( B  X.  A
) ) )
75, 6bitrdi 195 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  e.  ~P ( B  X.  A ) ) ) )
8 elex 2741 . . . . 5  |-  ( C  e.  ~P ( B  X.  A )  ->  C  e.  _V )
98a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ~P ( B  X.  A
)  ->  C  e.  _V ) )
10 xpexg 4725 . . . . . 6  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  A
)  e.  _V )
1110ancoms 266 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  A
)  e.  _V )
12 ssexg 4128 . . . . . 6  |-  ( ( C  C_  ( B  X.  A )  /\  ( B  X.  A )  e. 
_V )  ->  C  e.  _V )
1312expcom 115 . . . . 5  |-  ( ( B  X.  A )  e.  _V  ->  ( C  C_  ( B  X.  A )  ->  C  e.  _V ) )
1411, 13syl 14 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  C_  ( B  X.  A )  ->  C  e.  _V )
)
15 elpwg 3574 . . . . 5  |-  ( C  e.  _V  ->  ( C  e.  ~P ( B  X.  A )  <->  C  C_  ( B  X.  A ) ) )
1615a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  _V  ->  ( C  e.  ~P ( B  X.  A
)  <->  C  C_  ( B  X.  A ) ) ) )
179, 14, 16pm5.21ndd 700 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ~P ( B  X.  A
)  <->  C  C_  ( B  X.  A ) ) )
1817anbi2d 461 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( Fun  C  /\  C  e.  ~P ( B  X.  A
) )  <->  ( Fun  C  /\  C  C_  ( B  X.  A ) ) ) )
197, 18bitrd 187 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^pm  B )  <->  ( Fun  C  /\  C  C_  ( B  X.  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   {crab 2452   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566    X. cxp 4609   Fun wfun 5192  (class class class)co 5853    ^pm cpm 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pm 6629
This theorem is referenced by:  elpm2g  6643  pmss12g  6653  elpm  6657  pmsspw  6661  ennnfonelemj0  12356  lmfss  13038
  Copyright terms: Public domain W3C validator