ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmeng Unicode version

Theorem fundmeng 6773
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng  |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F 
~~  F )

Proof of Theorem fundmeng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funeq 5208 . . . 4  |-  ( x  =  F  ->  ( Fun  x  <->  Fun  F ) )
2 dmeq 4804 . . . . 5  |-  ( x  =  F  ->  dom  x  =  dom  F )
3 id 19 . . . . 5  |-  ( x  =  F  ->  x  =  F )
42, 3breq12d 3995 . . . 4  |-  ( x  =  F  ->  ( dom  x  ~~  x  <->  dom  F  ~~  F ) )
51, 4imbi12d 233 . . 3  |-  ( x  =  F  ->  (
( Fun  x  ->  dom  x  ~~  x )  <-> 
( Fun  F  ->  dom 
F  ~~  F )
) )
6 vex 2729 . . . 4  |-  x  e. 
_V
76fundmen 6772 . . 3  |-  ( Fun  x  ->  dom  x  ~~  x )
85, 7vtoclg 2786 . 2  |-  ( F  e.  V  ->  ( Fun  F  ->  dom  F  ~~  F ) )
98imp 123 1  |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F 
~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982   dom cdm 4604   Fun wfun 5182    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-en 6707
This theorem is referenced by:  fndmeng  6776  fundmfi  6903
  Copyright terms: Public domain W3C validator