ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmeng Unicode version

Theorem fundmeng 6861
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng  |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F 
~~  F )

Proof of Theorem fundmeng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funeq 5274 . . . 4  |-  ( x  =  F  ->  ( Fun  x  <->  Fun  F ) )
2 dmeq 4862 . . . . 5  |-  ( x  =  F  ->  dom  x  =  dom  F )
3 id 19 . . . . 5  |-  ( x  =  F  ->  x  =  F )
42, 3breq12d 4042 . . . 4  |-  ( x  =  F  ->  ( dom  x  ~~  x  <->  dom  F  ~~  F ) )
51, 4imbi12d 234 . . 3  |-  ( x  =  F  ->  (
( Fun  x  ->  dom  x  ~~  x )  <-> 
( Fun  F  ->  dom 
F  ~~  F )
) )
6 vex 2763 . . . 4  |-  x  e. 
_V
76fundmen 6860 . . 3  |-  ( Fun  x  ->  dom  x  ~~  x )
85, 7vtoclg 2820 . 2  |-  ( F  e.  V  ->  ( Fun  F  ->  dom  F  ~~  F ) )
98imp 124 1  |-  ( ( F  e.  V  /\  Fun  F )  ->  dom  F 
~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4029   dom cdm 4659   Fun wfun 5248    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-en 6795
This theorem is referenced by:  fndmeng  6864  fundmfi  6996
  Copyright terms: Public domain W3C validator