| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqd | Unicode version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 |
|
| Ref | Expression |
|---|---|
| funeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 |
. 2
| |
| 2 | funeq 5292 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4046 df-opab 4107 df-rel 4683 df-cnv 4684 df-co 4685 df-fun 5274 |
| This theorem is referenced by: funopg 5306 funsng 5321 funcnvuni 5344 f1eq1 5478 funopsn 5764 frecuzrdgtclt 10568 fundm2domnop0 10992 shftfn 11168 ennnfonelemfun 12821 ennnfonelemf1 12822 isstruct2im 12875 isstruct2r 12876 structfung 12882 setsfun 12900 setsfun0 12901 strslfv3 12911 funmptd 15776 |
| Copyright terms: Public domain | W3C validator |