ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqd Unicode version

Theorem funeqd 5281
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
funeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
funeqd  |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeqd
StepHypRef Expression
1 funeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 funeq 5279 . 2  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170  df-br 4035  df-opab 4096  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by:  funopg  5293  funsng  5305  funcnvuni  5328  f1eq1  5461  frecuzrdgtclt  10530  shftfn  11006  ennnfonelemfun  12659  ennnfonelemf1  12660  isstruct2im  12713  isstruct2r  12714  structfung  12720  setsfun  12738  setsfun0  12739  strslfv3  12749  funmptd  15533
  Copyright terms: Public domain W3C validator