ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqd Unicode version

Theorem funeqd 5240
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
funeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
funeqd  |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeqd
StepHypRef Expression
1 funeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 funeq 5238 . 2  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by:  funopg  5252  funsng  5264  funcnvuni  5287  f1eq1  5418  frecuzrdgtclt  10423  shftfn  10835  ennnfonelemfun  12420  ennnfonelemf1  12421  isstruct2im  12474  isstruct2r  12475  structfung  12481  setsfun  12499  setsfun0  12500  funmptd  14640
  Copyright terms: Public domain W3C validator