| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqd | Unicode version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 |
|
| Ref | Expression |
|---|---|
| funeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 |
. 2
| |
| 2 | funeq 5338 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-fun 5320 |
| This theorem is referenced by: funopg 5352 funsng 5367 funcnvuni 5390 f1eq1 5526 funopsn 5817 frecuzrdgtclt 10643 fundm2domnop0 11067 shftfn 11335 ennnfonelemfun 12988 ennnfonelemf1 12989 isstruct2im 13042 isstruct2r 13043 structfung 13049 setsfun 13067 setsfun0 13068 strslfv3 13078 funmptd 16167 |
| Copyright terms: Public domain | W3C validator |