ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqd Unicode version

Theorem funeqd 5340
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
funeqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
funeqd  |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )

Proof of Theorem funeqd
StepHypRef Expression
1 funeqd.1 . 2  |-  ( ph  ->  A  =  B )
2 funeq 5338 . 2  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by:  funopg  5352  funsng  5367  funcnvuni  5390  f1eq1  5526  funopsn  5817  frecuzrdgtclt  10643  fundm2domnop0  11067  shftfn  11335  ennnfonelemfun  12988  ennnfonelemf1  12989  isstruct2im  13042  isstruct2r  13043  structfung  13049  setsfun  13067  setsfun0  13068  strslfv3  13078  funmptd  16167
  Copyright terms: Public domain W3C validator