| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 5310 |
. . 3
| |
| 2 | dmeq 4897 |
. . . 4
| |
| 3 | 2 | eqeq1d 2216 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fn 5293 |
. 2
| |
| 6 | df-fn 5293 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-fun 5292 df-fn 5293 |
| This theorem is referenced by: fneq1d 5383 fneq1i 5387 fn0 5415 feq1 5428 foeq1 5516 f1ocnv 5557 mpteqb 5693 eufnfv 5838 uchoice 6246 tfr0dm 6431 tfrlemiex 6440 tfr1onlemsucfn 6449 tfr1onlemsucaccv 6450 tfr1onlembxssdm 6452 tfr1onlembfn 6453 tfr1onlemex 6456 tfr1onlemaccex 6457 tfr1onlemres 6458 mapval2 6788 elixp2 6812 ixpfn 6814 elixpsn 6845 cc2lem 7413 cc3 7415 lmodfopnelem1 14201 |
| Copyright terms: Public domain | W3C validator |