| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 5338 |
. . 3
| |
| 2 | dmeq 4923 |
. . . 4
| |
| 3 | 2 | eqeq1d 2238 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fn 5321 |
. 2
| |
| 6 | df-fn 5321 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: fneq1d 5411 fneq1i 5415 fn0 5443 feq1 5456 foeq1 5544 f1ocnv 5585 mpteqb 5725 eufnfv 5870 uchoice 6283 tfr0dm 6468 tfrlemiex 6477 tfr1onlemsucfn 6486 tfr1onlemsucaccv 6487 tfr1onlembxssdm 6489 tfr1onlembfn 6490 tfr1onlemex 6493 tfr1onlemaccex 6494 tfr1onlemres 6495 mapval2 6825 elixp2 6849 ixpfn 6851 elixpsn 6882 cc2lem 7452 cc3 7454 lmodfopnelem1 14288 |
| Copyright terms: Public domain | W3C validator |