ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1 Unicode version

Theorem fneq1 5343
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq1  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )

Proof of Theorem fneq1
StepHypRef Expression
1 funeq 5275 . . 3  |-  ( F  =  G  ->  ( Fun  F  <->  Fun  G ) )
2 dmeq 4863 . . . 4  |-  ( F  =  G  ->  dom  F  =  dom  G )
32eqeq1d 2202 . . 3  |-  ( F  =  G  ->  ( dom  F  =  A  <->  dom  G  =  A ) )
41, 3anbi12d 473 . 2  |-  ( F  =  G  ->  (
( Fun  F  /\  dom  F  =  A )  <-> 
( Fun  G  /\  dom  G  =  A ) ) )
5 df-fn 5258 . 2  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
6 df-fn 5258 . 2  |-  ( G  Fn  A  <->  ( Fun  G  /\  dom  G  =  A ) )
74, 5, 63bitr4g 223 1  |-  ( F  =  G  ->  ( F  Fn  A  <->  G  Fn  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   dom cdm 4660   Fun wfun 5249    Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-fun 5257  df-fn 5258
This theorem is referenced by:  fneq1d  5345  fneq1i  5349  fn0  5374  feq1  5387  foeq1  5473  f1ocnv  5514  mpteqb  5649  eufnfv  5790  uchoice  6192  tfr0dm  6377  tfrlemiex  6386  tfr1onlemsucfn  6395  tfr1onlemsucaccv  6396  tfr1onlembxssdm  6398  tfr1onlembfn  6399  tfr1onlemex  6402  tfr1onlemaccex  6403  tfr1onlemres  6404  mapval2  6734  elixp2  6758  ixpfn  6760  elixpsn  6791  cc2lem  7328  cc3  7330  lmodfopnelem1  13823
  Copyright terms: Public domain W3C validator