Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 5208 | . . 3 | |
2 | dmeq 4804 | . . . 4 | |
3 | 2 | eqeq1d 2174 | . . 3 |
4 | 1, 3 | anbi12d 465 | . 2 |
5 | df-fn 5191 | . 2 | |
6 | df-fn 5191 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 cdm 4604 wfun 5182 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 df-fn 5191 |
This theorem is referenced by: fneq1d 5278 fneq1i 5282 fn0 5307 feq1 5320 foeq1 5406 f1ocnv 5445 mpteqb 5576 eufnfv 5715 tfr0dm 6290 tfrlemiex 6299 tfr1onlemsucfn 6308 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfr1onlemex 6315 tfr1onlemaccex 6316 tfr1onlemres 6317 mapval2 6644 elixp2 6668 ixpfn 6670 elixpsn 6701 cc2lem 7207 cc3 7209 |
Copyright terms: Public domain | W3C validator |