| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| fneq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funeq 5278 | 
. . 3
 | |
| 2 | dmeq 4866 | 
. . . 4
 | |
| 3 | 2 | eqeq1d 2205 | 
. . 3
 | 
| 4 | 1, 3 | anbi12d 473 | 
. 2
 | 
| 5 | df-fn 5261 | 
. 2
 | |
| 6 | df-fn 5261 | 
. 2
 | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 df-fn 5261 | 
| This theorem is referenced by: fneq1d 5348 fneq1i 5352 fn0 5377 feq1 5390 foeq1 5476 f1ocnv 5517 mpteqb 5652 eufnfv 5793 uchoice 6195 tfr0dm 6380 tfrlemiex 6389 tfr1onlemsucfn 6398 tfr1onlemsucaccv 6399 tfr1onlembxssdm 6401 tfr1onlembfn 6402 tfr1onlemex 6405 tfr1onlemaccex 6406 tfr1onlemres 6407 mapval2 6737 elixp2 6761 ixpfn 6763 elixpsn 6794 cc2lem 7333 cc3 7335 lmodfopnelem1 13880 | 
| Copyright terms: Public domain | W3C validator |