| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 5291 |
. . 3
| |
| 2 | dmeq 4878 |
. . . 4
| |
| 3 | 2 | eqeq1d 2214 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fn 5274 |
. 2
| |
| 6 | df-fn 5274 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 df-fn 5274 |
| This theorem is referenced by: fneq1d 5364 fneq1i 5368 fn0 5395 feq1 5408 foeq1 5494 f1ocnv 5535 mpteqb 5670 eufnfv 5815 uchoice 6223 tfr0dm 6408 tfrlemiex 6417 tfr1onlemsucfn 6426 tfr1onlemsucaccv 6427 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfr1onlemex 6433 tfr1onlemaccex 6434 tfr1onlemres 6435 mapval2 6765 elixp2 6789 ixpfn 6791 elixpsn 6822 cc2lem 7378 cc3 7380 lmodfopnelem1 14086 |
| Copyright terms: Public domain | W3C validator |