| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version | ||
| Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| fneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 5292 |
. . 3
| |
| 2 | dmeq 4879 |
. . . 4
| |
| 3 | 2 | eqeq1d 2214 |
. . 3
|
| 4 | 1, 3 | anbi12d 473 |
. 2
|
| 5 | df-fn 5275 |
. 2
| |
| 6 | df-fn 5275 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-fun 5274 df-fn 5275 |
| This theorem is referenced by: fneq1d 5365 fneq1i 5369 fn0 5397 feq1 5410 foeq1 5496 f1ocnv 5537 mpteqb 5672 eufnfv 5817 uchoice 6225 tfr0dm 6410 tfrlemiex 6419 tfr1onlemsucfn 6428 tfr1onlemsucaccv 6429 tfr1onlembxssdm 6431 tfr1onlembfn 6432 tfr1onlemex 6435 tfr1onlemaccex 6436 tfr1onlemres 6437 mapval2 6767 elixp2 6791 ixpfn 6793 elixpsn 6824 cc2lem 7380 cc3 7382 lmodfopnelem1 14119 |
| Copyright terms: Public domain | W3C validator |