Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fneq1 | Unicode version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 5218 | . . 3 | |
2 | dmeq 4811 | . . . 4 | |
3 | 2 | eqeq1d 2179 | . . 3 |
4 | 1, 3 | anbi12d 470 | . 2 |
5 | df-fn 5201 | . 2 | |
6 | df-fn 5201 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 cdm 4611 wfun 5192 wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 |
This theorem is referenced by: fneq1d 5288 fneq1i 5292 fn0 5317 feq1 5330 foeq1 5416 f1ocnv 5455 mpteqb 5586 eufnfv 5726 tfr0dm 6301 tfrlemiex 6310 tfr1onlemsucfn 6319 tfr1onlemsucaccv 6320 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfr1onlemex 6326 tfr1onlemaccex 6327 tfr1onlemres 6328 mapval2 6656 elixp2 6680 ixpfn 6682 elixpsn 6713 cc2lem 7228 cc3 7230 |
Copyright terms: Public domain | W3C validator |