ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi Unicode version

Theorem funeqi 5275
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1  |-  A  =  B
Assertion
Ref Expression
funeqi  |-  ( Fun 
A  <->  Fun  B )

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2  |-  A  =  B
2 funeq 5274 . 2  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
31, 2ax-mp 5 1  |-  ( Fun 
A  <->  Fun  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  funmpt  5292  funmpt2  5293  funprg  5304  funtpg  5305  funtp  5307  funcnvuni  5323  f1cnvcnv  5470  f1co  5471  fun11iun  5521  f10  5534  funoprabg  6017  mpofun  6020  ovidig  6036  tposfun  6313  tfri1dALT  6404  tfrcl  6417  rdgfun  6426  frecfun  6448  frecfcllem  6457  th3qcor  6693  ssdomg  6832  sbthlem7  7022  sbthlemi8  7023  casefun  7144  caseinj  7148  djufun  7163  djuinj  7165  ctssdccl  7170  axaddf  7928  axmulf  7929  strleund  12721  strleun  12722  1strbas  12735  2strbasg  12737  2stropg  12738  lidlmex  13971
  Copyright terms: Public domain W3C validator