| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 |
|
| Ref | Expression |
|---|---|
| funeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 |
. 2
| |
| 2 | funeq 5338 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-fun 5320 |
| This theorem is referenced by: funmpt 5356 funmpt2 5357 fununfun 5364 funprg 5371 funtpg 5372 funtp 5374 funcnvuni 5390 f1cnvcnv 5542 f1co 5543 fun11iun 5593 f10 5606 funopdmsn 5819 funoprabg 6103 mpofun 6106 ovidig 6122 tposfun 6406 tfri1dALT 6497 tfrcl 6510 rdgfun 6519 frecfun 6541 frecfcllem 6550 th3qcor 6786 ssdomg 6930 sbthlem7 7130 sbthlemi8 7131 casefun 7252 caseinj 7256 djufun 7271 djuinj 7273 ctssdccl 7278 axaddf 8055 axmulf 8056 fundm2domnop0 11067 strleund 13136 strleun 13137 1strbas 13150 2strbasg 13153 2stropg 13154 lidlmex 14439 usgredg3 16012 ushgredgedg 16024 ushgredgedgloop 16026 |
| Copyright terms: Public domain | W3C validator |