| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 |
|
| Ref | Expression |
|---|---|
| funeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 |
. 2
| |
| 2 | funeq 5292 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-br 4046 df-opab 4107 df-rel 4683 df-cnv 4684 df-co 4685 df-fun 5274 |
| This theorem is referenced by: funmpt 5310 funmpt2 5311 fununfun 5318 funprg 5325 funtpg 5326 funtp 5328 funcnvuni 5344 f1cnvcnv 5494 f1co 5495 fun11iun 5545 f10 5558 funopdmsn 5766 funoprabg 6046 mpofun 6049 ovidig 6065 tposfun 6348 tfri1dALT 6439 tfrcl 6452 rdgfun 6461 frecfun 6483 frecfcllem 6492 th3qcor 6728 ssdomg 6872 sbthlem7 7067 sbthlemi8 7068 casefun 7189 caseinj 7193 djufun 7208 djuinj 7210 ctssdccl 7215 axaddf 7983 axmulf 7984 fundm2domnop0 10992 strleund 12968 strleun 12969 1strbas 12982 2strbasg 12985 2stropg 12986 lidlmex 14270 |
| Copyright terms: Public domain | W3C validator |