| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| funeqi.1 | 
 | 
| Ref | Expression | 
|---|---|
| funeqi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funeqi.1 | 
. 2
 | |
| 2 | funeq 5278 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-fun 5260 | 
| This theorem is referenced by: funmpt 5296 funmpt2 5297 funprg 5308 funtpg 5309 funtp 5311 funcnvuni 5327 f1cnvcnv 5474 f1co 5475 fun11iun 5525 f10 5538 funoprabg 6021 mpofun 6024 ovidig 6040 tposfun 6318 tfri1dALT 6409 tfrcl 6422 rdgfun 6431 frecfun 6453 frecfcllem 6462 th3qcor 6698 ssdomg 6837 sbthlem7 7029 sbthlemi8 7030 casefun 7151 caseinj 7155 djufun 7170 djuinj 7172 ctssdccl 7177 axaddf 7935 axmulf 7936 strleund 12781 strleun 12782 1strbas 12795 2strbasg 12797 2stropg 12798 lidlmex 14031 | 
| Copyright terms: Public domain | W3C validator |