ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi Unicode version

Theorem funeqi 5339
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1  |-  A  =  B
Assertion
Ref Expression
funeqi  |-  ( Fun 
A  <->  Fun  B )

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2  |-  A  =  B
2 funeq 5338 . 2  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
31, 2ax-mp 5 1  |-  ( Fun 
A  <->  Fun  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by:  funmpt  5356  funmpt2  5357  fununfun  5364  funprg  5371  funtpg  5372  funtp  5374  funcnvuni  5390  f1cnvcnv  5542  f1co  5543  fun11iun  5593  f10  5606  funopdmsn  5819  funoprabg  6103  mpofun  6106  ovidig  6122  tposfun  6406  tfri1dALT  6497  tfrcl  6510  rdgfun  6519  frecfun  6541  frecfcllem  6550  th3qcor  6786  ssdomg  6930  sbthlem7  7130  sbthlemi8  7131  casefun  7252  caseinj  7256  djufun  7271  djuinj  7273  ctssdccl  7278  axaddf  8055  axmulf  8056  fundm2domnop0  11067  strleund  13136  strleun  13137  1strbas  13150  2strbasg  13153  2stropg  13154  lidlmex  14439  usgredg3  16012  ushgredgedg  16024  ushgredgedgloop  16026
  Copyright terms: Public domain W3C validator