![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
funeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | funeq 5101 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-in 3043 df-ss 3050 df-br 3896 df-opab 3950 df-rel 4506 df-cnv 4507 df-co 4508 df-fun 5083 |
This theorem is referenced by: funmpt 5119 funmpt2 5120 funprg 5131 funtpg 5132 funtp 5134 funcnvuni 5150 f1cnvcnv 5297 f1co 5298 fun11iun 5344 f10 5357 funoprabg 5824 mpofun 5827 ovidig 5842 tposfun 6111 tfri1dALT 6202 tfrcl 6215 rdgfun 6224 frecfun 6246 frecfcllem 6255 th3qcor 6487 ssdomg 6626 sbthlem7 6803 sbthlemi8 6804 casefun 6922 caseinj 6926 djufun 6941 djuinj 6943 ctssdccl 6948 axaddf 7600 axmulf 7601 strleund 11887 strleun 11888 1strbas 11898 2strbasg 11900 2stropg 11901 |
Copyright terms: Public domain | W3C validator |