ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi Unicode version

Theorem funeqi 5276
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1  |-  A  =  B
Assertion
Ref Expression
funeqi  |-  ( Fun 
A  <->  Fun  B )

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2  |-  A  =  B
2 funeq 5275 . 2  |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
31, 2ax-mp 5 1  |-  ( Fun 
A  <->  Fun  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-fun 5257
This theorem is referenced by:  funmpt  5293  funmpt2  5294  funprg  5305  funtpg  5306  funtp  5308  funcnvuni  5324  f1cnvcnv  5471  f1co  5472  fun11iun  5522  f10  5535  funoprabg  6018  mpofun  6021  ovidig  6037  tposfun  6315  tfri1dALT  6406  tfrcl  6419  rdgfun  6428  frecfun  6450  frecfcllem  6459  th3qcor  6695  ssdomg  6834  sbthlem7  7024  sbthlemi8  7025  casefun  7146  caseinj  7150  djufun  7165  djuinj  7167  ctssdccl  7172  axaddf  7930  axmulf  7931  strleund  12724  strleun  12725  1strbas  12738  2strbasg  12740  2stropg  12741  lidlmex  13974
  Copyright terms: Public domain W3C validator