![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
funeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | funeq 5275 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3160 df-ss 3167 df-br 4031 df-opab 4092 df-rel 4667 df-cnv 4668 df-co 4669 df-fun 5257 |
This theorem is referenced by: funmpt 5293 funmpt2 5294 funprg 5305 funtpg 5306 funtp 5308 funcnvuni 5324 f1cnvcnv 5471 f1co 5472 fun11iun 5522 f10 5535 funoprabg 6018 mpofun 6021 ovidig 6037 tposfun 6315 tfri1dALT 6406 tfrcl 6419 rdgfun 6428 frecfun 6450 frecfcllem 6459 th3qcor 6695 ssdomg 6834 sbthlem7 7024 sbthlemi8 7025 casefun 7146 caseinj 7150 djufun 7165 djuinj 7167 ctssdccl 7172 axaddf 7930 axmulf 7931 strleund 12724 strleun 12725 1strbas 12738 2strbasg 12740 2stropg 12741 lidlmex 13974 |
Copyright terms: Public domain | W3C validator |