| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funeq | GIF version | ||
| Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| funeq | ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3256 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | funss 5309 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Fun 𝐴 → Fun 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵)) |
| 4 | eqimss 3255 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | funss 5309 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| 7 | 3, 6 | impbid 129 | 1 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⊆ wss 3174 Fun wfun 5284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-fun 5292 |
| This theorem is referenced by: funeqi 5311 funeqd 5312 fununi 5361 funcnvuni 5362 cnvresid 5367 fneq1 5381 funop 5786 elpmg 6774 fundmeng 6923 |
| Copyright terms: Public domain | W3C validator |