ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeq GIF version

Theorem funeq 5290
Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
funeq (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))

Proof of Theorem funeq
StepHypRef Expression
1 eqimss2 3247 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 funss 5289 . . 3 (𝐵𝐴 → (Fun 𝐴 → Fun 𝐵))
31, 2syl 14 . 2 (𝐴 = 𝐵 → (Fun 𝐴 → Fun 𝐵))
4 eqimss 3246 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 funss 5289 . . 3 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
64, 5syl 14 . 2 (𝐴 = 𝐵 → (Fun 𝐵 → Fun 𝐴))
73, 6impbid 129 1 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wss 3165  Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-in 3171  df-ss 3178  df-br 4044  df-opab 4105  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  funeqi  5291  funeqd  5292  fununi  5341  funcnvuni  5342  cnvresid  5347  fneq1  5361  funop  5762  elpmg  6750  fundmeng  6898
  Copyright terms: Public domain W3C validator