ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveqeq2d Unicode version

Theorem fveqeq2d 5524
Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
Hypothesis
Ref Expression
fveqeq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fveqeq2d  |-  ( ph  ->  ( ( F `  A )  =  C  <-> 
( F `  B
)  =  C ) )

Proof of Theorem fveqeq2d
StepHypRef Expression
1 fveqeq2d.1 . . 3  |-  ( ph  ->  A  =  B )
21fveq2d 5520 . 2  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
32eqeq1d 2186 1  |-  ( ph  ->  ( ( F `  A )  =  C  <-> 
( F `  B
)  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225
This theorem is referenced by:  fveqeq2  5525  nnnninfeq2  7127  enmkvlem  7159  algcvga  12051  pilem3  14207  nninfomni  14771
  Copyright terms: Public domain W3C validator