ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveqeq2d Unicode version

Theorem fveqeq2d 5584
Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
Hypothesis
Ref Expression
fveqeq2d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fveqeq2d  |-  ( ph  ->  ( ( F `  A )  =  C  <-> 
( F `  B
)  =  C ) )

Proof of Theorem fveqeq2d
StepHypRef Expression
1 fveqeq2d.1 . . 3  |-  ( ph  ->  A  =  B )
21fveq2d 5580 . 2  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
32eqeq1d 2214 1  |-  ( ph  ->  ( ( F `  A )  =  C  <-> 
( F `  B
)  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279
This theorem is referenced by:  fveqeq2  5585  nnnninfeq2  7231  enmkvlem  7263  nninfctlemfo  12361  algcvga  12373  mhmex  13294  resmhm  13319  isghm  13579  lspsneq0  14188  pilem3  15255  2lgslem3c  15572  2lgslem3d  15573  nninfomni  15960
  Copyright terms: Public domain W3C validator