ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveq12d Unicode version

Theorem fveq12d 5566
Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
fveq12d.1  |-  ( ph  ->  F  =  G )
fveq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fveq12d  |-  ( ph  ->  ( F `  A
)  =  ( G `
 B ) )

Proof of Theorem fveq12d
StepHypRef Expression
1 fveq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fveq1d 5561 . 2  |-  ( ph  ->  ( F `  A
)  =  ( G `
 A ) )
3 fveq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fveq2d 5563 . 2  |-  ( ph  ->  ( G `  A
)  =  ( G `
 B ) )
52, 4eqtrd 2229 1  |-  ( ph  ->  ( F `  A
)  =  ( G `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267
This theorem is referenced by:  nffvd  5571  fvsng  5759  fvmpopr2d  6061  tfrlem3ag  6369  tfrlem3a  6370  tfrlemi1  6392  tfr1onlem3ag  6397  omp1eomlem  7162  seq3shft  11006  climshft2  11474  fsum3  11555  ctiunctlemfo  12667  imasival  12975  gsumfzval  13060  gsumval2  13066  mulgfvalg  13277  mulgval  13278  mulgnndir  13307  mulgpropdg  13320  unitinvinv  13706  rlmvalg  14036  rsp0  14075  znval  14218  reldvg  14941  dvfvalap  14943  lgsval  15271  lgsneg  15291
  Copyright terms: Public domain W3C validator