ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveq12d Unicode version

Theorem fveq12d 5606
Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
fveq12d.1  |-  ( ph  ->  F  =  G )
fveq12d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
fveq12d  |-  ( ph  ->  ( F `  A
)  =  ( G `
 B ) )

Proof of Theorem fveq12d
StepHypRef Expression
1 fveq12d.1 . . 3  |-  ( ph  ->  F  =  G )
21fveq1d 5601 . 2  |-  ( ph  ->  ( F `  A
)  =  ( G `
 A ) )
3 fveq12d.2 . . 3  |-  ( ph  ->  A  =  B )
43fveq2d 5603 . 2  |-  ( ph  ->  ( G `  A
)  =  ( G `
 B ) )
52, 4eqtrd 2240 1  |-  ( ph  ->  ( F `  A
)  =  ( G `
 B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298
This theorem is referenced by:  nffvd  5611  fvsng  5803  fvmpopr2d  6105  tfrlem3ag  6418  tfrlem3a  6419  tfrlemi1  6441  tfr1onlem3ag  6446  omp1eomlem  7222  lswwrd  11077  swrdval  11139  seq3shft  11264  climshft2  11732  fsum3  11813  ctiunctlemfo  12925  imasival  13253  gsumfzval  13338  gsumval2  13344  prdsinvlem  13555  mulgfvalg  13572  mulgval  13573  mulgnndir  13602  mulgpropdg  13615  unitinvinv  14001  rlmvalg  14331  rsp0  14370  znval  14513  reldvg  15266  dvfvalap  15268  lgsval  15596  lgsneg  15616
  Copyright terms: Public domain W3C validator