Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveqeq2 | Unicode version |
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
Ref | Expression |
---|---|
fveqeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 1 | fveqeq2d 5469 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 cfv 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 |
This theorem is referenced by: fodjum 7068 fodju0 7069 fodjuomnilemres 7070 fodjumkvlemres 7081 fodjumkv 7082 enmkvlem 7083 enwomnilem 7091 seq3id3 10384 seq3id2 10386 seq3z 10388 fsum3cvg 11252 summodclem2a 11255 fproddccvg 11446 algfx 11900 ennnfonelemim 12104 reeff1oleme 13032 sin0pilem2 13042 bj-charfunbi 13324 nninfomnilem 13531 trilpolemlt1 13553 redcwlpolemeq1 13566 nconstwlpolem0 13574 nconstwlpolem 13576 neapmkvlem 13578 |
Copyright terms: Public domain | W3C validator |