| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | Unicode version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | fveqeq2d 5569 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: uchoice 6204 nninfninc 7198 nnnninfeq2 7204 fodjum 7221 fodju0 7222 fodjuomnilemres 7223 fodjumkvlemres 7234 fodjumkv 7235 enmkvlem 7236 enwomnilem 7244 nninfwlporlemd 7247 nninfwlpoimlemginf 7251 nninfwlpoim 7253 seq3id3 10633 seq3id2 10635 seq3z 10637 wrdmap 10983 fsum3cvg 11560 summodclem2a 11563 fproddccvg 11754 nninfctlemfo 12232 algfx 12245 ennnfonelemim 12666 gsumfzz 13197 ghmf1 13479 ivthreinc 14965 ivthdich 14973 reeff1oleme 15092 sin0pilem2 15102 lgsquadlem1 15402 bj-charfunbi 15541 2omap 15726 nninfomnilem 15749 trilpolemlt1 15772 redcwlpolemeq1 15785 nconstwlpolem0 15794 nconstwlpolem 15796 neapmkvlem 15798 |
| Copyright terms: Public domain | W3C validator |