ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveqeq2 Unicode version

Theorem fveqeq2 5470
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
Assertion
Ref Expression
fveqeq2  |-  ( A  =  B  ->  (
( F `  A
)  =  C  <->  ( F `  B )  =  C ) )

Proof of Theorem fveqeq2
StepHypRef Expression
1 id 19 . 2  |-  ( A  =  B  ->  A  =  B )
21fveqeq2d 5469 1  |-  ( A  =  B  ->  (
( F `  A
)  =  C  <->  ( F `  B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332   ` cfv 5163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-iota 5128  df-fv 5171
This theorem is referenced by:  fodjum  7068  fodju0  7069  fodjuomnilemres  7070  fodjumkvlemres  7081  fodjumkv  7082  enmkvlem  7083  enwomnilem  7091  seq3id3  10384  seq3id2  10386  seq3z  10388  fsum3cvg  11252  summodclem2a  11255  fproddccvg  11446  algfx  11900  ennnfonelemim  12104  reeff1oleme  13032  sin0pilem2  13042  bj-charfunbi  13324  nninfomnilem  13531  trilpolemlt1  13553  redcwlpolemeq1  13566  nconstwlpolem0  13574  nconstwlpolem  13576  neapmkvlem  13578
  Copyright terms: Public domain W3C validator