ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveqeq2 Unicode version

Theorem fveqeq2 5495
Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
Assertion
Ref Expression
fveqeq2  |-  ( A  =  B  ->  (
( F `  A
)  =  C  <->  ( F `  B )  =  C ) )

Proof of Theorem fveqeq2
StepHypRef Expression
1 id 19 . 2  |-  ( A  =  B  ->  A  =  B )
21fveqeq2d 5494 1  |-  ( A  =  B  ->  (
( F `  A
)  =  C  <->  ( F `  B )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  nnnninfeq2  7093  fodjum  7110  fodju0  7111  fodjuomnilemres  7112  fodjumkvlemres  7123  fodjumkv  7124  enmkvlem  7125  enwomnilem  7133  seq3id3  10442  seq3id2  10444  seq3z  10446  fsum3cvg  11319  summodclem2a  11322  fproddccvg  11513  algfx  11984  ennnfonelemim  12357  reeff1oleme  13333  sin0pilem2  13343  bj-charfunbi  13693  nninfomnilem  13898  trilpolemlt1  13920  redcwlpolemeq1  13933  nconstwlpolem0  13941  nconstwlpolem  13943  neapmkvlem  13945
  Copyright terms: Public domain W3C validator