| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2 | Unicode version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | fveqeq2d 5635 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: uchoice 6283 nninfninc 7290 nnnninfeq2 7296 fodjum 7313 fodju0 7314 fodjuomnilemres 7315 fodjumkvlemres 7326 fodjumkv 7327 enmkvlem 7328 enwomnilem 7336 nninfwlporlemd 7339 nninfwlpoimlemginf 7343 nninfwlpoim 7346 nninfinfwlpo 7347 seq3id3 10746 seq3id2 10748 seq3z 10750 wrdmap 11103 wrdl1s1 11163 wrdind 11254 wrd2ind 11255 reuccatpfxs1lem 11278 reuccatpfxs1 11279 fsum3cvg 11889 summodclem2a 11892 fproddccvg 12083 nninfctlemfo 12561 algfx 12574 ennnfonelemim 12995 gsumfzz 13528 ghmf1 13810 mplsubgfilemcl 14663 ivthreinc 15319 ivthdich 15327 reeff1oleme 15446 sin0pilem2 15456 lgsquadlem1 15756 gropd 15848 grstructd2dom 15849 uhgr2edg 16004 usgredg2v 16022 ushgredgedgloop 16026 bj-charfunbi 16174 2omap 16359 pw1map 16361 nninfomnilem 16384 nnnninfex 16388 trilpolemlt1 16409 redcwlpolemeq1 16422 nconstwlpolem0 16431 nconstwlpolem 16433 neapmkvlem 16435 |
| Copyright terms: Public domain | W3C validator |