| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveqeq2d | GIF version | ||
| Description: Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| Ref | Expression |
|---|---|
| fveqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveqeq2d | ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | fveq2d 5603 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) |
| 3 | 2 | eqeq1d 2216 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: fveqeq2 5608 nnnninfeq2 7257 enmkvlem 7289 nninfctlemfo 12476 algcvga 12488 mhmex 13409 resmhm 13434 isghm 13694 lspsneq0 14303 pilem3 15370 2lgslem3c 15687 2lgslem3d 15688 nninfomni 16158 |
| Copyright terms: Public domain | W3C validator |