ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf2 Unicode version

Theorem xaddpnf2 9925
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 8082 . . 3  |- +oo  e.  RR*
2 xaddval 9923 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo +e A )  =  if ( +oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( +oo  +  A ) ) ) ) ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( +oo +e A )  =  if ( +oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( +oo  +  A ) ) ) ) ) )
4 eqid 2196 . . . 4  |- +oo  = +oo
54iftruei 3568 . . 3  |-  if ( +oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( +oo  +  A
) ) ) ) )  =  if ( A  = -oo , 
0 , +oo )
6 ifnefalse 3573 . . 3  |-  ( A  =/= -oo  ->  if ( A  = -oo , 
0 , +oo )  = +oo )
75, 6eqtrid 2241 . 2  |-  ( A  =/= -oo  ->  if ( +oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( +oo  +  A
) ) ) ) )  = +oo )
83, 7sylan9eq 2249 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   ifcif 3562  (class class class)co 5923   0cc0 7882    + caddc 7885   +oocpnf 8061   -oocmnf 8062   RR*cxr 8063   +ecxad 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1re 7976  ax-addrcl 7979  ax-rnegex 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8066  df-mnf 8067  df-xr 8068  df-xadd 9851
This theorem is referenced by:  xaddnemnf  9935  xaddcom  9939  xaddid1  9940  xnn0xadd0  9945  xnegdi  9946  xaddass  9947  xleadd1a  9951  xltadd1  9954  xposdif  9960  xleaddadd  9965  xrmaxadd  11429  xrbdtri  11444  isxmet2d  14610
  Copyright terms: Public domain W3C validator