ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf2 Unicode version

Theorem xaddpnf2 9999
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 8155 . . 3  |- +oo  e.  RR*
2 xaddval 9997 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo +e A )  =  if ( +oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( +oo  +  A ) ) ) ) ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( +oo +e A )  =  if ( +oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( +oo  +  A ) ) ) ) ) )
4 eqid 2206 . . . 4  |- +oo  = +oo
54iftruei 3581 . . 3  |-  if ( +oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( +oo  +  A
) ) ) ) )  =  if ( A  = -oo , 
0 , +oo )
6 ifnefalse 3586 . . 3  |-  ( A  =/= -oo  ->  if ( A  = -oo , 
0 , +oo )  = +oo )
75, 6eqtrid 2251 . 2  |-  ( A  =/= -oo  ->  if ( +oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( +oo  +  A
) ) ) ) )  = +oo )
83, 7sylan9eq 2259 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    =/= wne 2377   ifcif 3575  (class class class)co 5962   0cc0 7955    + caddc 7958   +oocpnf 8134   -oocmnf 8135   RR*cxr 8136   +ecxad 9922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052  ax-rnegex 8064
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-xadd 9925
This theorem is referenced by:  xaddnemnf  10009  xaddcom  10013  xaddid1  10014  xnn0xadd0  10019  xnegdi  10020  xaddass  10021  xleadd1a  10025  xltadd1  10028  xposdif  10034  xleaddadd  10039  xrmaxadd  11657  xrbdtri  11672  isxmet2d  14905
  Copyright terms: Public domain W3C validator