ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf2 Unicode version

Theorem xaddpnf2 9865
Description: Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )

Proof of Theorem xaddpnf2
StepHypRef Expression
1 pnfxr 8028 . . 3  |- +oo  e.  RR*
2 xaddval 9863 . . 3  |-  ( ( +oo  e.  RR*  /\  A  e.  RR* )  ->  ( +oo +e A )  =  if ( +oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( +oo  +  A ) ) ) ) ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( +oo +e A )  =  if ( +oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( +oo  +  A ) ) ) ) ) )
4 eqid 2189 . . . 4  |- +oo  = +oo
54iftruei 3555 . . 3  |-  if ( +oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( +oo  +  A
) ) ) ) )  =  if ( A  = -oo , 
0 , +oo )
6 ifnefalse 3560 . . 3  |-  ( A  =/= -oo  ->  if ( A  = -oo , 
0 , +oo )  = +oo )
75, 6eqtrid 2234 . 2  |-  ( A  =/= -oo  ->  if ( +oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( +oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( +oo  +  A
) ) ) ) )  = +oo )
83, 7sylan9eq 2242 1  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    =/= wne 2360   ifcif 3549  (class class class)co 5891   0cc0 7829    + caddc 7832   +oocpnf 8007   -oocmnf 8008   RR*cxr 8009   +ecxad 9788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926  ax-rnegex 7938
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-xadd 9791
This theorem is referenced by:  xaddnemnf  9875  xaddcom  9879  xaddid1  9880  xnn0xadd0  9885  xnegdi  9886  xaddass  9887  xleadd1a  9891  xltadd1  9894  xposdif  9900  xleaddadd  9905  xrmaxadd  11287  xrbdtri  11302  isxmet2d  14245
  Copyright terms: Public domain W3C validator