ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddmnf2 Unicode version

Theorem xaddmnf2 9918
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )

Proof of Theorem xaddmnf2
StepHypRef Expression
1 mnfxr 8078 . . 3  |- -oo  e.  RR*
2 xaddval 9914 . . 3  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( -oo +e A )  =  if ( -oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( -oo  +  A ) ) ) ) ) )
31, 2mpan 424 . 2  |-  ( A  e.  RR*  ->  ( -oo +e A )  =  if ( -oo  = +oo ,  if ( A  = -oo , 
0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo ,  ( -oo  +  A ) ) ) ) ) )
4 mnfnepnf 8077 . . . . 5  |- -oo  =/= +oo
5 ifnefalse 3569 . . . . 5  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  =  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )
64, 5ax-mp 5 . . . 4  |-  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  =  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) )
7 eqid 2193 . . . . 5  |- -oo  = -oo
87iftruei 3564 . . . 4  |-  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) )  =  if ( A  = +oo ,  0 , -oo )
96, 8eqtri 2214 . . 3  |-  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  =  if ( A  = +oo , 
0 , -oo )
10 ifnefalse 3569 . . 3  |-  ( A  =/= +oo  ->  if ( A  = +oo , 
0 , -oo )  = -oo )
119, 10eqtrid 2238 . 2  |-  ( A  =/= +oo  ->  if ( -oo  = +oo ,  if ( A  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( A  = +oo ,  0 , -oo ) ,  if ( A  = +oo , +oo ,  if ( A  = -oo , -oo , 
( -oo  +  A
) ) ) ) )  = -oo )
123, 11sylan9eq 2246 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   ifcif 3558  (class class class)co 5919   0cc0 7874    + caddc 7877   +oocpnf 8053   -oocmnf 8054   RR*cxr 8055   +ecxad 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-rnegex 7983
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-xadd 9842
This theorem is referenced by:  xaddnepnf  9927  xaddcom  9930  xaddid1  9931  xnegdi  9937  xpncan  9940  xleadd1a  9942  xltadd1  9945  xlt2add  9949  xposdif  9951  xleaddadd  9956  xrmaxadd  11407
  Copyright terms: Public domain W3C validator