ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexadd Unicode version

Theorem rexadd 9929
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexadd  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )

Proof of Theorem rexadd
StepHypRef Expression
1 rexr 8074 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 8074 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 xaddval 9922 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
5 renepnf 8076 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
6 ifnefalse 3573 . . . . 5  |-  ( A  =/= +oo  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )
75, 6syl 14 . . . 4  |-  ( A  e.  RR  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )
8 renemnf 8077 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
9 ifnefalse 3573 . . . . 5  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )
108, 9syl 14 . . . 4  |-  ( A  e.  RR  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
117, 10eqtrd 2229 . . 3  |-  ( A  e.  RR  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
12 renepnf 8076 . . . . 5  |-  ( B  e.  RR  ->  B  =/= +oo )
13 ifnefalse 3573 . . . . 5  |-  ( B  =/= +oo  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
1412, 13syl 14 . . . 4  |-  ( B  e.  RR  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
15 renemnf 8077 . . . . 5  |-  ( B  e.  RR  ->  B  =/= -oo )
16 ifnefalse 3573 . . . . 5  |-  ( B  =/= -oo  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  =  ( A  +  B
) )
1715, 16syl 14 . . . 4  |-  ( B  e.  RR  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  =  ( A  +  B ) )
1814, 17eqtrd 2229 . . 3  |-  ( B  e.  RR  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  ( A  +  B ) )
1911, 18sylan9eq 2249 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  if ( A  = +oo ,  if ( B  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo , 
0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  ( A  +  B
) )
204, 19eqtrd 2229 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   ifcif 3562  (class class class)co 5923   RRcr 7880   0cc0 7881    + caddc 7884   +oocpnf 8060   -oocmnf 8061   RR*cxr 8062   +ecxad 9847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978  ax-rnegex 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-xadd 9850
This theorem is referenced by:  rexsub  9930  rexaddd  9931  xaddnemnf  9934  xaddnepnf  9935  xnegid  9936  xaddcom  9938  xaddid1  9939  xnn0xadd0  9944  xnegdi  9945  xaddass  9946  xltadd1  9953  isxmet2d  14594  mettri2  14608  bl2in  14649  xmeter  14682
  Copyright terms: Public domain W3C validator