| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexadd | Unicode version | ||
| Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| rexadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8188 |
. . 3
| |
| 2 | rexr 8188 |
. . 3
| |
| 3 | xaddval 10037 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | renepnf 8190 |
. . . . 5
| |
| 6 | ifnefalse 3613 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | renemnf 8191 |
. . . . 5
| |
| 9 | ifnefalse 3613 |
. . . . 5
| |
| 10 | 8, 9 | syl 14 |
. . . 4
|
| 11 | 7, 10 | eqtrd 2262 |
. . 3
|
| 12 | renepnf 8190 |
. . . . 5
| |
| 13 | ifnefalse 3613 |
. . . . 5
| |
| 14 | 12, 13 | syl 14 |
. . . 4
|
| 15 | renemnf 8191 |
. . . . 5
| |
| 16 | ifnefalse 3613 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | 14, 17 | eqtrd 2262 |
. . 3
|
| 19 | 11, 18 | sylan9eq 2282 |
. 2
|
| 20 | 4, 19 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-xadd 9965 |
| This theorem is referenced by: rexsub 10045 rexaddd 10046 xaddnemnf 10049 xaddnepnf 10050 xnegid 10051 xaddcom 10053 xaddid1 10054 xnn0xadd0 10059 xnegdi 10060 xaddass 10061 xltadd1 10068 isxmet2d 15016 mettri2 15030 bl2in 15071 xmeter 15104 |
| Copyright terms: Public domain | W3C validator |