ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexadd Unicode version

Theorem rexadd 9809
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexadd  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )

Proof of Theorem rexadd
StepHypRef Expression
1 rexr 7965 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 7965 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
3 xaddval 9802 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) ) )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
5 renepnf 7967 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
6 ifnefalse 3537 . . . . 5  |-  ( A  =/= +oo  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) ) )
75, 6syl 14 . . . 4  |-  ( A  e.  RR  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )
8 renemnf 7968 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
9 ifnefalse 3537 . . . . 5  |-  ( A  =/= -oo  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo , 
( A  +  B
) ) ) )
108, 9syl 14 . . . 4  |-  ( A  e.  RR  ->  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
117, 10eqtrd 2203 . . 3  |-  ( A  e.  RR  ->  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) )
12 renepnf 7967 . . . . 5  |-  ( B  e.  RR  ->  B  =/= +oo )
13 ifnefalse 3537 . . . . 5  |-  ( B  =/= +oo  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
1412, 13syl 14 . . . 4  |-  ( B  e.  RR  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  if ( B  = -oo , -oo ,  ( A  +  B ) ) )
15 renemnf 7968 . . . . 5  |-  ( B  e.  RR  ->  B  =/= -oo )
16 ifnefalse 3537 . . . . 5  |-  ( B  =/= -oo  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  =  ( A  +  B
) )
1715, 16syl 14 . . . 4  |-  ( B  e.  RR  ->  if ( B  = -oo , -oo ,  ( A  +  B ) )  =  ( A  +  B ) )
1814, 17eqtrd 2203 . . 3  |-  ( B  e.  RR  ->  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) )  =  ( A  +  B ) )
1911, 18sylan9eq 2223 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  if ( A  = +oo ,  if ( B  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo , 
0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) )  =  ( A  +  B
) )
204, 19eqtrd 2203 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340   ifcif 3526  (class class class)co 5853   RRcr 7773   0cc0 7774    + caddc 7777   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953   +ecxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871  ax-rnegex 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-xadd 9730
This theorem is referenced by:  rexsub  9810  rexaddd  9811  xaddnemnf  9814  xaddnepnf  9815  xnegid  9816  xaddcom  9818  xaddid1  9819  xnn0xadd0  9824  xnegdi  9825  xaddass  9826  xltadd1  9833  isxmet2d  13142  mettri2  13156  bl2in  13197  xmeter  13230
  Copyright terms: Public domain W3C validator