ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfaddpnf Unicode version

Theorem mnfaddpnf 9851
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mnfaddpnf  |-  ( -oo +e +oo )  =  0

Proof of Theorem mnfaddpnf
StepHypRef Expression
1 mnfxr 8014 . . 3  |- -oo  e.  RR*
2 pnfxr 8010 . . 3  |- +oo  e.  RR*
3 xaddval 9845 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo +e +oo )  =  if ( -oo  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo )
) ) ) ) )
41, 2, 3mp2an 426 . 2  |-  ( -oo +e +oo )  =  if ( -oo  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo )
) ) ) )
5 mnfnepnf 8013 . . . 4  |- -oo  =/= +oo
6 ifnefalse 3546 . . . 4  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo ,  if ( +oo  = -oo , 
0 , +oo ) ,  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo , 
( -oo  + +oo ) ) ) ) )  =  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo )
) ) ) )
75, 6ax-mp 5 . . 3  |-  if ( -oo  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo ) ) ) ) )  =  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo )
) ) )
8 eqid 2177 . . . . 5  |- -oo  = -oo
98iftruei 3541 . . . 4  |-  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo )
) ) )  =  if ( +oo  = +oo ,  0 , -oo )
10 eqid 2177 . . . . 5  |- +oo  = +oo
1110iftruei 3541 . . . 4  |-  if ( +oo  = +oo , 
0 , -oo )  =  0
129, 11eqtri 2198 . . 3  |-  if ( -oo  = -oo ,  if ( +oo  = +oo ,  0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo )
) ) )  =  0
137, 12eqtri 2198 . 2  |-  if ( -oo  = +oo ,  if ( +oo  = -oo ,  0 , +oo ) ,  if ( -oo  = -oo ,  if ( +oo  = +oo , 
0 , -oo ) ,  if ( +oo  = +oo , +oo ,  if ( +oo  = -oo , -oo ,  ( -oo  + +oo ) ) ) ) )  =  0
144, 13eqtri 2198 1  |-  ( -oo +e +oo )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148    =/= wne 2347   ifcif 3535  (class class class)co 5875   0cc0 7811    + caddc 7814   +oocpnf 7989   -oocmnf 7990   RR*cxr 7991   +ecxad 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908  ax-rnegex 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-xadd 9773
This theorem is referenced by:  xnegid  9859  xaddcom  9861  xnegdi  9868  xsubge0  9881  xposdif  9882  xrmaxadd  11269
  Copyright terms: Public domain W3C validator