| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptpreima | Unicode version | ||
| Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| dmmpo.1 |
|
| Ref | Expression |
|---|---|
| mptpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpo.1 |
. . . . . 6
| |
| 2 | df-mpt 4097 |
. . . . . 6
| |
| 3 | 1, 2 | eqtri 2217 |
. . . . 5
|
| 4 | 3 | cnveqi 4842 |
. . . 4
|
| 5 | cnvopab 5072 |
. . . 4
| |
| 6 | 4, 5 | eqtri 2217 |
. . 3
|
| 7 | 6 | imaeq1i 5007 |
. 2
|
| 8 | df-ima 4677 |
. . 3
| |
| 9 | resopab 4991 |
. . . . 5
| |
| 10 | 9 | rneqi 4895 |
. . . 4
|
| 11 | ancom 266 |
. . . . . . . . 9
| |
| 12 | anass 401 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | 13 | exbii 1619 |
. . . . . . 7
|
| 15 | 19.42v 1921 |
. . . . . . . 8
| |
| 16 | df-clel 2192 |
. . . . . . . . . 10
| |
| 17 | 16 | bicomi 132 |
. . . . . . . . 9
|
| 18 | 17 | anbi2i 457 |
. . . . . . . 8
|
| 19 | 15, 18 | bitri 184 |
. . . . . . 7
|
| 20 | 14, 19 | bitri 184 |
. . . . . 6
|
| 21 | 20 | abbii 2312 |
. . . . 5
|
| 22 | rnopab 4914 |
. . . . 5
| |
| 23 | df-rab 2484 |
. . . . 5
| |
| 24 | 21, 22, 23 | 3eqtr4i 2227 |
. . . 4
|
| 25 | 10, 24 | eqtri 2217 |
. . 3
|
| 26 | 8, 25 | eqtri 2217 |
. 2
|
| 27 | 7, 26 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-mpt 4097 df-xp 4670 df-rel 4671 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 |
| This theorem is referenced by: mptiniseg 5165 dmmpt 5166 fmpt 5715 f1oresrab 5730 suppssfv 6135 suppssov1 6136 infrenegsupex 9685 infxrnegsupex 11445 eqglact 13431 fczpsrbag 14301 txcnmpt 14593 txdis1cn 14598 imasnopn 14619 |
| Copyright terms: Public domain | W3C validator |