| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptpreima | Unicode version | ||
| Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| dmmpo.1 |
|
| Ref | Expression |
|---|---|
| mptpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmpo.1 |
. . . . . 6
| |
| 2 | df-mpt 4106 |
. . . . . 6
| |
| 3 | 1, 2 | eqtri 2225 |
. . . . 5
|
| 4 | 3 | cnveqi 4852 |
. . . 4
|
| 5 | cnvopab 5083 |
. . . 4
| |
| 6 | 4, 5 | eqtri 2225 |
. . 3
|
| 7 | 6 | imaeq1i 5018 |
. 2
|
| 8 | df-ima 4687 |
. . 3
| |
| 9 | resopab 5002 |
. . . . 5
| |
| 10 | 9 | rneqi 4905 |
. . . 4
|
| 11 | ancom 266 |
. . . . . . . . 9
| |
| 12 | anass 401 |
. . . . . . . . 9
| |
| 13 | 11, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | 13 | exbii 1627 |
. . . . . . 7
|
| 15 | 19.42v 1929 |
. . . . . . . 8
| |
| 16 | df-clel 2200 |
. . . . . . . . . 10
| |
| 17 | 16 | bicomi 132 |
. . . . . . . . 9
|
| 18 | 17 | anbi2i 457 |
. . . . . . . 8
|
| 19 | 15, 18 | bitri 184 |
. . . . . . 7
|
| 20 | 14, 19 | bitri 184 |
. . . . . 6
|
| 21 | 20 | abbii 2320 |
. . . . 5
|
| 22 | rnopab 4924 |
. . . . 5
| |
| 23 | df-rab 2492 |
. . . . 5
| |
| 24 | 21, 22, 23 | 3eqtr4i 2235 |
. . . 4
|
| 25 | 10, 24 | eqtri 2225 |
. . 3
|
| 26 | 8, 25 | eqtri 2225 |
. 2
|
| 27 | 7, 26 | eqtri 2225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-mpt 4106 df-xp 4680 df-rel 4681 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 |
| This theorem is referenced by: mptiniseg 5176 dmmpt 5177 fmpt 5729 f1oresrab 5744 suppssfv 6153 suppssov1 6154 infrenegsupex 9714 infxrnegsupex 11516 eqglact 13503 fczpsrbag 14375 txcnmpt 14687 txdis1cn 14692 imasnopn 14713 |
| Copyright terms: Public domain | W3C validator |