Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptpreima | Unicode version |
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpo.1 |
Ref | Expression |
---|---|
mptpreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpo.1 | . . . . . 6 | |
2 | df-mpt 4045 | . . . . . 6 | |
3 | 1, 2 | eqtri 2186 | . . . . 5 |
4 | 3 | cnveqi 4779 | . . . 4 |
5 | cnvopab 5005 | . . . 4 | |
6 | 4, 5 | eqtri 2186 | . . 3 |
7 | 6 | imaeq1i 4943 | . 2 |
8 | df-ima 4617 | . . 3 | |
9 | resopab 4928 | . . . . 5 | |
10 | 9 | rneqi 4832 | . . . 4 |
11 | ancom 264 | . . . . . . . . 9 | |
12 | anass 399 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 183 | . . . . . . . 8 |
14 | 13 | exbii 1593 | . . . . . . 7 |
15 | 19.42v 1894 | . . . . . . . 8 | |
16 | df-clel 2161 | . . . . . . . . . 10 | |
17 | 16 | bicomi 131 | . . . . . . . . 9 |
18 | 17 | anbi2i 453 | . . . . . . . 8 |
19 | 15, 18 | bitri 183 | . . . . . . 7 |
20 | 14, 19 | bitri 183 | . . . . . 6 |
21 | 20 | abbii 2282 | . . . . 5 |
22 | rnopab 4851 | . . . . 5 | |
23 | df-rab 2453 | . . . . 5 | |
24 | 21, 22, 23 | 3eqtr4i 2196 | . . . 4 |
25 | 10, 24 | eqtri 2186 | . . 3 |
26 | 8, 25 | eqtri 2186 | . 2 |
27 | 7, 26 | eqtri 2186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 crab 2448 copab 4042 cmpt 4043 ccnv 4603 crn 4605 cres 4606 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: mptiniseg 5098 dmmpt 5099 fmpt 5635 f1oresrab 5650 suppssfv 6046 suppssov1 6047 infrenegsupex 9532 infxrnegsupex 11204 txcnmpt 12913 txdis1cn 12918 imasnopn 12939 |
Copyright terms: Public domain | W3C validator |