![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaeq2i | Unicode version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imaeq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | imaeq2 4980 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-un 3147 df-in 3149 df-ss 3156 df-sn 3612 df-pr 3613 df-op 3615 df-br 4018 df-opab 4079 df-xp 4646 df-cnv 4648 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 |
This theorem is referenced by: cnvimarndm 5006 dmco 5151 fnimapr 5591 ssimaex 5592 imauni 5777 isoini2 5835 uniqs 6610 fiintim 6945 fidcenumlemrks 6969 fidcenumlemr 6971 nn0supp 9245 ennnfonelem1 12425 ennnfonelemhf1o 12431 ghmeqker 13170 retopbas 14406 |
Copyright terms: Public domain | W3C validator |