| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2i | Unicode version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 |
|
| Ref | Expression |
|---|---|
| imaeq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 |
. 2
| |
| 2 | imaeq2 5019 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 |
| This theorem is referenced by: cnvimarndm 5047 dmco 5192 fnimapr 5641 ssimaex 5642 imauni 5832 isoini2 5890 uniqs 6682 fiintim 7030 fidcenumlemrks 7057 fidcenumlemr 7059 nn0supp 9349 ennnfonelem1 12811 ennnfonelemhf1o 12817 ghmeqker 13640 retopbas 15028 |
| Copyright terms: Public domain | W3C validator |