ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2i Unicode version

Theorem imaeq2i 4982
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
imaeq1i.1  |-  A  =  B
Assertion
Ref Expression
imaeq2i  |-  ( C
" A )  =  ( C " B
)

Proof of Theorem imaeq2i
StepHypRef Expression
1 imaeq1i.1 . 2  |-  A  =  B
2 imaeq2 4980 . 2  |-  ( A  =  B  ->  ( C " A )  =  ( C " B
) )
31, 2ax-mp 5 1  |-  ( C
" A )  =  ( C " B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1363   "cima 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-un 3147  df-in 3149  df-ss 3156  df-sn 3612  df-pr 3613  df-op 3615  df-br 4018  df-opab 4079  df-xp 4646  df-cnv 4648  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653
This theorem is referenced by:  cnvimarndm  5006  dmco  5151  fnimapr  5591  ssimaex  5592  imauni  5777  isoini2  5835  uniqs  6610  fiintim  6945  fidcenumlemrks  6969  fidcenumlemr  6971  nn0supp  9245  ennnfonelem1  12425  ennnfonelemhf1o  12431  ghmeqker  13170  retopbas  14406
  Copyright terms: Public domain W3C validator