ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2i Unicode version

Theorem imaeq2i 4759
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
imaeq1i.1  |-  A  =  B
Assertion
Ref Expression
imaeq2i  |-  ( C
" A )  =  ( C " B
)

Proof of Theorem imaeq2i
StepHypRef Expression
1 imaeq1i.1 . 2  |-  A  =  B
2 imaeq2 4757 . 2  |-  ( A  =  B  ->  ( C " A )  =  ( C " B
) )
31, 2ax-mp 7 1  |-  ( C
" A )  =  ( C " B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1289   "cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by:  cnvimarndm  4783  dmco  4926  fnimapr  5348  ssimaex  5349  imauni  5522  isoini2  5580  uniqs  6330  fidcenumlemrks  6641  fidcenumlemr  6643  nn0supp  8695
  Copyright terms: Public domain W3C validator