ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnco Unicode version

Theorem cnco 14808
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )

Proof of Theorem cnco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop1 14788 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cntop2 14789 . . 3  |-  ( G  e.  ( K  Cn  L )  ->  L  e.  Top )
31, 2anim12i 338 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( J  e.  Top  /\  L  e.  Top )
)
4 eqid 2207 . . . . 5  |-  U. K  =  U. K
5 eqid 2207 . . . . 5  |-  U. L  =  U. L
64, 5cnf 14791 . . . 4  |-  ( G  e.  ( K  Cn  L )  ->  G : U. K --> U. L
)
7 eqid 2207 . . . . 5  |-  U. J  =  U. J
87, 4cnf 14791 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
9 fco 5461 . . . 4  |-  ( ( G : U. K --> U. L  /\  F : U. J --> U. K )  -> 
( G  o.  F
) : U. J --> U. L )
106, 8, 9syl2anr 290 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
) : U. J --> U. L )
11 cnvco 4881 . . . . . . 7  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
1211imaeq1i 5038 . . . . . 6  |-  ( `' ( G  o.  F
) " x )  =  ( ( `' F  o.  `' G
) " x )
13 imaco 5207 . . . . . 6  |-  ( ( `' F  o.  `' G ) " x
)  =  ( `' F " ( `' G " x ) )
1412, 13eqtri 2228 . . . . 5  |-  ( `' ( G  o.  F
) " x )  =  ( `' F " ( `' G "
x ) )
15 simpll 527 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  F  e.  ( J  Cn  K
) )
16 cnima 14807 . . . . . . 7  |-  ( ( G  e.  ( K  Cn  L )  /\  x  e.  L )  ->  ( `' G "
x )  e.  K
)
1716adantll 476 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' G " x )  e.  K )
18 cnima 14807 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( `' G " x )  e.  K )  -> 
( `' F "
( `' G "
x ) )  e.  J )
1915, 17, 18syl2anc 411 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' F " ( `' G " x ) )  e.  J )
2014, 19eqeltrid 2294 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' ( G  o.  F ) " x
)  e.  J )
2120ralrimiva 2581 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  ->  A. x  e.  L  ( `' ( G  o.  F ) " x
)  e.  J )
2210, 21jca 306 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( ( G  o.  F ) : U. J
--> U. L  /\  A. x  e.  L  ( `' ( G  o.  F ) " x
)  e.  J ) )
237, 5iscn2 14787 . 2  |-  ( ( G  o.  F )  e.  ( J  Cn  L )  <->  ( ( J  e.  Top  /\  L  e.  Top )  /\  (
( G  o.  F
) : U. J --> U. L  /\  A. x  e.  L  ( `' ( G  o.  F
) " x )  e.  J ) ) )
243, 22, 23sylanbrc 417 1  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486   U.cuni 3864   `'ccnv 4692   "cima 4696    o. ccom 4697   -->wf 5286  (class class class)co 5967   Topctop 14584    Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775
This theorem is referenced by:  txcn  14862  cnmpt11  14870  cnmpt21  14878  hmeoco  14903
  Copyright terms: Public domain W3C validator