ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnco Unicode version

Theorem cnco 13015
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )

Proof of Theorem cnco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop1 12995 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cntop2 12996 . . 3  |-  ( G  e.  ( K  Cn  L )  ->  L  e.  Top )
31, 2anim12i 336 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( J  e.  Top  /\  L  e.  Top )
)
4 eqid 2170 . . . . 5  |-  U. K  =  U. K
5 eqid 2170 . . . . 5  |-  U. L  =  U. L
64, 5cnf 12998 . . . 4  |-  ( G  e.  ( K  Cn  L )  ->  G : U. K --> U. L
)
7 eqid 2170 . . . . 5  |-  U. J  =  U. J
87, 4cnf 12998 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
9 fco 5363 . . . 4  |-  ( ( G : U. K --> U. L  /\  F : U. J --> U. K )  -> 
( G  o.  F
) : U. J --> U. L )
106, 8, 9syl2anr 288 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
) : U. J --> U. L )
11 cnvco 4796 . . . . . . 7  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
1211imaeq1i 4950 . . . . . 6  |-  ( `' ( G  o.  F
) " x )  =  ( ( `' F  o.  `' G
) " x )
13 imaco 5116 . . . . . 6  |-  ( ( `' F  o.  `' G ) " x
)  =  ( `' F " ( `' G " x ) )
1412, 13eqtri 2191 . . . . 5  |-  ( `' ( G  o.  F
) " x )  =  ( `' F " ( `' G "
x ) )
15 simpll 524 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  F  e.  ( J  Cn  K
) )
16 cnima 13014 . . . . . . 7  |-  ( ( G  e.  ( K  Cn  L )  /\  x  e.  L )  ->  ( `' G "
x )  e.  K
)
1716adantll 473 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' G " x )  e.  K )
18 cnima 13014 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( `' G " x )  e.  K )  -> 
( `' F "
( `' G "
x ) )  e.  J )
1915, 17, 18syl2anc 409 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' F " ( `' G " x ) )  e.  J )
2014, 19eqeltrid 2257 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' ( G  o.  F ) " x
)  e.  J )
2120ralrimiva 2543 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  ->  A. x  e.  L  ( `' ( G  o.  F ) " x
)  e.  J )
2210, 21jca 304 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( ( G  o.  F ) : U. J
--> U. L  /\  A. x  e.  L  ( `' ( G  o.  F ) " x
)  e.  J ) )
237, 5iscn2 12994 . 2  |-  ( ( G  o.  F )  e.  ( J  Cn  L )  <->  ( ( J  e.  Top  /\  L  e.  Top )  /\  (
( G  o.  F
) : U. J --> U. L  /\  A. x  e.  L  ( `' ( G  o.  F
) " x )  e.  J ) ) )
243, 22, 23sylanbrc 415 1  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448   U.cuni 3796   `'ccnv 4610   "cima 4614    o. ccom 4615   -->wf 5194  (class class class)co 5853   Topctop 12789    Cn ccn 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cn 12982
This theorem is referenced by:  txcn  13069  cnmpt11  13077  cnmpt21  13085  hmeoco  13110
  Copyright terms: Public domain W3C validator