| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnco | Unicode version | ||
| Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 14875 |
. . 3
| |
| 2 | cntop2 14876 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqid 2229 |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | 4, 5 | cnf 14878 |
. . . 4
|
| 7 | eqid 2229 |
. . . . 5
| |
| 8 | 7, 4 | cnf 14878 |
. . . 4
|
| 9 | fco 5489 |
. . . 4
| |
| 10 | 6, 8, 9 | syl2anr 290 |
. . 3
|
| 11 | cnvco 4907 |
. . . . . . 7
| |
| 12 | 11 | imaeq1i 5065 |
. . . . . 6
|
| 13 | imaco 5234 |
. . . . . 6
| |
| 14 | 12, 13 | eqtri 2250 |
. . . . 5
|
| 15 | simpll 527 |
. . . . . 6
| |
| 16 | cnima 14894 |
. . . . . . 7
| |
| 17 | 16 | adantll 476 |
. . . . . 6
|
| 18 | cnima 14894 |
. . . . . 6
| |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . 5
|
| 20 | 14, 19 | eqeltrid 2316 |
. . . 4
|
| 21 | 20 | ralrimiva 2603 |
. . 3
|
| 22 | 10, 21 | jca 306 |
. 2
|
| 23 | 7, 5 | iscn2 14874 |
. 2
|
| 24 | 3, 22, 23 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-top 14672 df-topon 14685 df-cn 14862 |
| This theorem is referenced by: txcn 14949 cnmpt11 14957 cnmpt21 14965 hmeoco 14990 |
| Copyright terms: Public domain | W3C validator |