Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnco | Unicode version |
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 12841 | . . 3 | |
2 | cntop2 12842 | . . 3 | |
3 | 1, 2 | anim12i 336 | . 2 |
4 | eqid 2165 | . . . . 5 | |
5 | eqid 2165 | . . . . 5 | |
6 | 4, 5 | cnf 12844 | . . . 4 |
7 | eqid 2165 | . . . . 5 | |
8 | 7, 4 | cnf 12844 | . . . 4 |
9 | fco 5353 | . . . 4 | |
10 | 6, 8, 9 | syl2anr 288 | . . 3 |
11 | cnvco 4789 | . . . . . . 7 | |
12 | 11 | imaeq1i 4943 | . . . . . 6 |
13 | imaco 5109 | . . . . . 6 | |
14 | 12, 13 | eqtri 2186 | . . . . 5 |
15 | simpll 519 | . . . . . 6 | |
16 | cnima 12860 | . . . . . . 7 | |
17 | 16 | adantll 468 | . . . . . 6 |
18 | cnima 12860 | . . . . . 6 | |
19 | 15, 17, 18 | syl2anc 409 | . . . . 5 |
20 | 14, 19 | eqeltrid 2253 | . . . 4 |
21 | 20 | ralrimiva 2539 | . . 3 |
22 | 10, 21 | jca 304 | . 2 |
23 | 7, 5 | iscn2 12840 | . 2 |
24 | 3, 22, 23 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 wral 2444 cuni 3789 ccnv 4603 cima 4607 ccom 4608 wf 5184 (class class class)co 5842 ctop 12635 ccn 12825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-top 12636 df-topon 12649 df-cn 12828 |
This theorem is referenced by: txcn 12915 cnmpt11 12923 cnmpt21 12931 hmeoco 12956 |
Copyright terms: Public domain | W3C validator |