ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 Unicode version

Theorem ineq2 3358
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3357 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
2 incom 3355 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3355 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33eqtr4g 2254 1  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  ineq12  3359  ineq2i  3361  ineq2d  3364  uneqin  3414  intprg  3907  fiintim  6992  uzin2  11152  inopn  14239  basis1  14283  basis2  14284  baspartn  14286  metreslem  14616  qtopbasss  14757
  Copyright terms: Public domain W3C validator