ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 Unicode version

Theorem ineq2 3368
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3367 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
2 incom 3365 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3365 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33eqtr4g 2263 1  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  ineq12  3369  ineq2i  3371  ineq2d  3374  uneqin  3424  intprg  3918  fiintim  7030  uzin2  11331  inopn  14508  basis1  14552  basis2  14553  baspartn  14555  metreslem  14885  qtopbasss  15026
  Copyright terms: Public domain W3C validator