ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 Unicode version

Theorem ineq2 3399
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3398 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
2 incom 3396 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3396 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33eqtr4g 2287 1  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  ineq12  3400  ineq2i  3402  ineq2d  3405  uneqin  3455  intprg  3956  fiintim  7093  uzin2  11498  inopn  14677  basis1  14721  basis2  14722  baspartn  14724  metreslem  15054  qtopbasss  15195
  Copyright terms: Public domain W3C validator