ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 Unicode version

Theorem ineq2 3332
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3331 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
2 incom 3329 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3329 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33eqtr4g 2235 1  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137
This theorem is referenced by:  ineq12  3333  ineq2i  3335  ineq2d  3338  uneqin  3388  intprg  3879  fiintim  6930  uzin2  10998  inopn  13588  basis1  13632  basis2  13633  baspartn  13635  metreslem  13965  qtopbasss  14106
  Copyright terms: Public domain W3C validator