ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 Unicode version

Theorem ineq2 3354
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3353 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
2 incom 3351 . 2  |-  ( C  i^i  A )  =  ( A  i^i  C
)
3 incom 3351 . 2  |-  ( C  i^i  B )  =  ( B  i^i  C
)
41, 2, 33eqtr4g 2251 1  |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    i^i cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159
This theorem is referenced by:  ineq12  3355  ineq2i  3357  ineq2d  3360  uneqin  3410  intprg  3903  fiintim  6985  uzin2  11131  inopn  14171  basis1  14215  basis2  14216  baspartn  14218  metreslem  14548  qtopbasss  14689
  Copyright terms: Public domain W3C validator